
Encodage de la réécriture de termes en π-calcul
Rapport de stage de L2

Guillaume Chirache
Encadré par Romain Demangeon

Laboratoire d’informatique de Paris 6
Sorbonne Université

Septembre 2021

Table des matières
1 Introduction 1

2 Algèbres et réécriture 2
2.1 Algèbres de termes . 3
2.2 Systèmes de réécriture . 3
2.3 Cas de l’arithmétique de Peano . 5

3 Encodage des algèbres en π-calcul 6
3.1 Présentation du π-calcul et équivalence comportementale . 6
3.2 Encodage d’une algèbre de termes . 9

4 Traduction d’un système de réécriture en service π-calcul 10
4.1 Principe général . 10
4.2 Implémentation formelle . 10
4.3 Correction . 12
4.4 Application à l’évaluation de l’arithmétique de Peano . 13

5 Conclusion 13
5.1 Bilan du travail réalisé . 13
5.2 Apport personnel du stage . 14

6 Références 14

1 Introduction
On considère une algèbre, c’est-à-dire une structure algébrique dont l’ensemble T des termes est construit

à partir d’une liste finie de constantes et d’opérateurs admettant un certain nombre de termes en arguments.
On souhaite étudier la manipulation des éléments de T en programmation concurrente. Pour cela, il est
utile de les représenter en π-calcul, qui est un langage formel servant à modéliser des systèmes concurrents.
C’est ce qu’a fait Amel Chadda lors de son stage de L3 au LIP6 en juin-juillet 2019. Son rapport [Cha19]
propose une manière d’encoder les termes de telles algèbres en π-calcul, dont on donne une version légèrement
modifiée dans la définition 31. Pour poursuivre ce travail, on souhaite effectuer des calculs, dans un cadre
le plus général possible, sur ces termes. Le problème qui se pose est représenté dans la figure 1 : comment
représenter une application f : Tn → T en π-calcul pour pouvoir l’appliquer aux termes encodés ?

En mathématiques, une telle application est définie de façon ensembliste par une relation qui à tout
élément de Tn associe un unique terme de T . Cette définition n’est pas utilisable directement en informatique,

1

Mathématiques

π-calcul

t1, . . . , tn f(t1, . . . , tn)f

Jt1Kp1
| . . . | JtnKpn

Jf(t1, . . . , tn)Kp?

Encodage sur p1, . . . , pn Encodé sur p

Figure 1 – Comment représenter f : Tn → T en π-calcul ?

car elle ne dit comment obtenir f(t1, . . . , tn) à partir de t1, . . . , tn, ni même si ce calcul est réalisable par un
ordinateur. Il est nécessaire de disposer d’un modèle de calcul indiquant comment passer d’un élément à son
image par des opérations élémentaires. Pour cela, on fait le choix d’utiliser la réécriture de termes, sur
laquelle l’ouvrage [BN98] constitue une référence. Plutôt que de définir une application Tn → T , on ajoute
un opérateur d’arité n, et on explicite sa manipulation à travers des règles de réécriture. On peut ainsi évaluer
les termes en leur appliquant des règles de réécriture jusqu’à obtenir un terme irréductible appelé « forme
normale ». L’intérêt de cette approche est double : d’une part, les règles de réécriture indiquent explicitement
comment passer d’un terme à un autre, ce qui permet de les transcrire en algorithme. D’autre part, on ne
perd pas en expressivité par rapport à ce qui est possible sur un ordinateur puisque la réécriture constitue
un modèle de calcul Turing-complet. Cela signifie qu’elle permet de modéliser toute opération calculable par
une machine de Turing, ce qui correspond à la notion « naturelle » de calculabilité dont la thèse de Church
postule l’existence.

Mathématiques

π-calcul

t t′Évaluation en une forme normale

JtKp (νr) (eval⟨p, r⟩.r(p′))Appel parallèle au serveur eval

Encodage sur p Encodé sur p′Traduction

Figure 2 – L’implémentation réalisée

Mon travail, réalisé au LIP6 en septembre 2021 et encadré par Romain Demangeon, a consisté à m’appro-
prier les notions abordées dans cette introduction (π-calcul, systèmes de réécriture et encodage des algèbres),
à les adapter légèrement pour en produire une présentation cohérente, puis à implémenter le serveur eval
décrit dans la figure 2. Afin d’ouvrir la voie à une future preuve de cette implémentation, j’ai proposé un
énoncé de correction (conjectures 37 et 38), ce qui a nécessité la création d’une notion d’encodage inverse
(définition 32). Pour illustrer les notions présentées, j’ai pris comme exemple tout au long de l’article la ré-
écriture de l’arithmétique de Peano permettant d’en calculer les additions et multiplications, dont j’ai aussi
prouvé la terminaison et la validité.

La section 2 introduit formellement les notions mathématiques d’algèbre et de réécriture sur ses termes,
puis la section 3 présente le π-calcul et l’encodage des algèbres dans ce langage. Enfin, la section 4 présente
la traduction des règles de réécriture en un service π-calcul.

2 Algèbres et réécriture
Dans cette section, on introduit les notions mathématiques d’algèbre et de réécriture, que nous allons

ensuite modéliser en π-calcul. Une algèbre est un objet exclusivement syntaxique, tandis que la réécriture
est un modèle de calcul permettant de lui associer une sémantique. Mon travail ici a consisté à m’approprier
ces notions et à produire une définition formelle et cohérente des définitions associées, dans la mesure où
celles-ci sont introduites différemment selon les références.

2

2.1 Algèbres de termes
Une algèbre de termes (ou, en informatique, simplement « algèbre ») est une structure algébrique dont

les éléments (termes) sont construits à partir d’une liste bien définie d’opérateurs munis d’une arité (un
nombre d’arguments attendus). Pour définir formellement les constructions autorisées, on introduit la notion
de signature.

Définition 1 (Signature).
(i) On dispose d’un ensemble dénombrable S de symboles.
(ii) Une signature Σ est un ensemble fini de couples (f, a) ∈ S × N, constitués d’un symbole f appelé

opérateur et d’un entier naturel a appelé arité de l’opérateur, et tel que pour tout ((f, a), (g, b)) ∈ Σ2,
a ̸= b =⇒ f ̸= g.

(iii) Pour a ∈ N, on note Σa = {f ∈ S | (f, a) ∈ Σ} l’ensemble des opérateurs de Σ d’arité a.
(iv) Les opérateurs de Σ0, qui n’admettent aucun argument, sont appelés constantes.

Définition 2 (Algèbre). On définit inductivement l’algèbre sur la signature Σ, dont l’ensemble des termes
est noté T(Σ), par :

∀(f, a) ∈ Σ, ∀(t1, . . . , ta) ∈ T(Σ)a, f(t1, . . . , ta) ∈ T(Σ) .

Remarque 3. Informellement, cela signifie qu’un terme t ∈ T(Σ) est un opérateur appliqué à autant de termes
que son arité le demande. Cette définition inclut le cas de base Σ0 ⊆ T(Σ), qui correspond à a = 0. Le cas
dégénéré où la signature ne comporte aucune constante n’est pas interdit, mais présente peu d’intérêt car
Σ0 = ∅ =⇒ T(Σ) = ∅.

Exemple 4 (Entiers naturels et arithmétique de Peano). On peut construire l’ensemble des entiers naturels
comme l’algèbre de signature {(0, 0), (s, 1)}, en considérant que la constante 0 désigne le zéro et que s est
l’opérateur « suivant », de sorte que pour tout entier n ⩾ 0, n est désigné par le terme sn(0).

La signature P = {(0, 0), (s, 1), (+, 2), (·, 2)}, obtenue en ajoutant deux opérateurs + et · d’arité 2, permet
de construire l’ensemble des expressions de l’arithmétique de Peano, c’est-à-dire celles constituées d’additions
et de multiplications sur des entiers naturels. Ainsi, le terme s2(0) · (s(0) + s3(0)) représente l’expression
2 · (1+ 3). La structure d’algèbre ne permet cependant pas de traduire le fait que 2 · (1+ 3) = 8, ce qui nous
amènera à introduire la réécriture.

On peut concevoir un terme d’une algèbre comme une arborescence dont les feuilles sont des constantes,
les nœuds internes des opérateurs d’arité non nulle, et la racine le dernier opérateur utilisé. Cela justifie
l’introduction des définitions suivantes.

Définition 5. Soit Σ une signature. Pour tout (f, a) ∈ Σ et tout terme t ∈ T(Σ) tel que t = f(t1, . . . , ta)
avec (t1, . . . , ta) ∈ T(Σ)a, on définit récursivement l’ensemble des symboles S(t), celui des sous-termes ST(t),
la taille T(t) et la hauteur H(t) de t, ainsi que le nombre O(t, g) d’occurences d’un opérateur g de Σ dans t
par les formules ci-dessous.

S(t) = {f} ∪

(
a⋃

i=1

S(ti)

)
ST(t) = {t} ∪

(
a⋃

i=1

ST(ti)

)
T(t) = 1 +

a∑
i=1

T(ti)

H(t) = 1 + max
i∈J1,aK

H(ti) O(t, g) =

{
1 +

∑a
i=1 O(ti, g) si f = g∑a

i=1 O(ti, g) sinon

On appelle de plus racine de t et on note R(t) l’opérateur f . Enfin, on définit l’ensemble des constantes de t
comme C(t) = S(t) ∩ Σ0.

2.2 Systèmes de réécriture
La réécriture (ou récriture) dans une algèbre est un cadre formel permettant d’en transformer les termes

par l’application de règles précises et calculables. Elle permet de donner une sémantique à une structure

3

exclusivement syntaxique. Ainsi, en reprenant l’exemple 4, on souhaite par exemple évaluer s2(0)·(s(0)+s3(0))
en s8(0).

Pour définir formellement ces règles et leurs applications, on doit introduire plusieurs objets. L’idée
globale est la suivante : une variable permet de désigner un terme quelconque, une substitution permet de
remplacer les variables par des termes, et un contexte permet de situer, parmi les sous-termes d’un élément,
celui où l’on applique une règle de réécriture.

Définition 6 (Algèbre munie de variables, substitution).
(i) On dispose d’un ensemble dénombrable V de « variables », tel que S ∩ V = ∅.
(ii) L’algèbre munie de variables sur la signature Σ, dont l’ensemble des termes est noté T(Σ,V), est

informellement l’algèbre obtenue en ajoutant les variables aux constantes de Σ. Formellement, on la
définit inductivement par les formules ci-dessous.

V ⊆ T(Σ,V) ∀(f, a) ∈ Σ, ∀(r1, . . . , ra) ∈ T(Σ,V)a, f(r1, . . . , ra) ∈ T(Σ,V)

(iii) Pour r ∈ T(Σ,V), on définit S(r), ST(r), T(r), H(r), O(r, ·), R(r) et C(r) de la même manière que dans
la définition 5, en considérant les variables comme des opérateurs d’arité nulle. On définit l’ensemble
V(r) des variables de r par V(r) = C(r) ∩ V.

(iv) Une substitution est une application σ : V → T(Σ,V) dont le support supp(σ) = {x ∈ V | σ(x) ̸= x}
est fini et telle que σ(supp(σ)) ⊆ T(Σ).

(v) Si r ∈ T(Σ,V) et que V(r) ⊆ supp(σ), on note rσ le terme de T(Σ) obtenu en remplaçant les variables
de r selon σ. Formellement, si r ∈ supp(σ), rσ = σ(r), et si r = f(r1, . . . , ra) avec (f, a) ∈ Σ et
(r1, . . . , ra) ∈ T(Σ,V)a, rσ = f(r1

σ, . . . , ra
σ).

Définition 7 (Contexte, instance).
(i) Un contexte C sur Σ est informellement un terme de T(Σ) auquel un unique sous-terme, noté ▲, est

manquant. Formellement, un contexte est soit le symbole ▲, soit un objet de la forme f(t1, . . . , ta), où
(f, a) ∈ Σ et il existe i ∈ J1, aK tel que ti est un contexte et que ∀j ̸= i, tj ∈ T(Σ).

(ii) Si C est un contexte sur Σ et u ∈ T(Σ), on appelle instance de C de paramètre u et on note C [u] le
terme obtenu en remplaçant ▲ dans C par u. Formellement, pour tout u ∈ T(Σ), on pose ▲[u] = u et
pour tout (f, a) ∈ Σ et tout contexte C tel que C = f(t1, . . . , ta), où i ∈ J1, aK est tel que ti est un
contexte, C [u] = f(. . . , ti−1, ti[u], ti+1, . . .).

Définition 8 (Système de réécriture).
(i) Une règle de réécriture r −→ r′ sur la signature Σ est la donnée d’un couple de termes (r, r′) ∈ T(Σ,V)2

tel que r n’est pas une variable, que toutes les variables de r y apparaissent une unique fois et que
toutes les variables de r′ apparaissent dans r, i.e. r ̸∈ V, ∀x ∈ V(r), O(r, x) = 1 et V(r′) ⊆ V(r).

(ii) Un système de réécriture sur Σ est un ensemble fini de règles de réécriture sur Σ.

Définition 9 (Règle applicable, terme réductible, forme normale).
(i) On dit que t ∈ T(Σ) se réécrit en t′ ∈ T(Σ), ce que l’on note t −→ t′, s’il existe une règle r −→ r′, une

substitution σ et un contexte C sur Σ tels que t = C [rσ] et t′ = C [r′
σ
].

(ii) Un terme t ∈ T(Σ) est dit réductible s’il existe t′ ∈ T(Σ) tel que t −→ t′, et irréductible dans le cas
contraire.

(iii) On note ∗−→ la clotûre symétrique transitive de −→, c’est-à-dire que t
∗−→ t′ si et seulement s’il existe

n ∈ N et (tk)k∈J0,nK ∈ T(Σ)n+1 tels que t0 = t, tn = t′ et ∀k ∈ J0, n− 1K, tk −→ tk+1.

(iv) On dit que t′ ∈ T(Σ) est une forme normale de t ∈ T(Σ) si t ∗−→ t′ et que t′ est irréductible.

Évaluer un terme consiste donc à lui appliquer des règles de réécriture, de façon potentiellement non
déterministe s’il y a plusieurs possibilités, jusqu’à obtenir une forme normale. Si le processus de réécriture
aboutit toujours en un nombre fini d’étapes, le système de réécriture est dit terminant.

Définition 10 (Système de réécriture terminant). Un système de réécriture sur Σ est terminant s’il n’existe
aucune suite (tn)n∈N ∈ T(Σ)N telle que pour tout n ∈ N, tn −→ tn+1.

4

2.3 Cas de l’arithmétique de Peano
On reprend la signature P = {(0, 0), (s, 1), (+, 2), (·, 2)} définie à l’exemple 4, et on la munit d’un système

de réécriture pour pouvoir calculer la valeur des expressions de T(P).

Définition 11 (Réécriture sur l’arithmétique de Peano). On munit la signature P des règles de réécriture
ci-dessous, où (x, y) ∈ V2.

0 + y −→ y s(x) + y −→ s(x+ y) 0 · y −→ 0 s(x) · y −→ y + (x · y)

Ces quatre règles de réécriture sont compatibles avec les lois + et · sur N puisqu’étant donné la description
des opérateurs 0 et s dans l’exemple 4, elles s’interprètent respectivement comme les égalités 0 + p = p,
(n+ 1) + p = (n+ p) + 1, 0 · p = 0 et (n+ 1) · p = p+ (n · p), qui sont bien vérifiées pour tout (n, p) ∈ N2.
Ainsi, si t −→ t′ et, par récurrence immédiate, si t ∗−→ t′, les expressions modélisées par t et t′ ont la même
valeur.

Montrons maintenant que ce système de réécriture a de bonnes propriétés. En particulier, il est terminant,
et calcule effectivement les opérations contenues dans les termes, de sorte que les termes irréductibles ne
contiennent pas d’additions et de multiplications.

Proposition 12. Si t ∈ T(P) est irréductible, alors O(t,+) = O(t, ·) = 0.

Preuve. Montrons la contraposée : soit t ∈ T(P) tel que O(t,+) + O(t, ·) ⩾ 1. On pose :

hmin = min{H(t′) | t′ ∈ ST(t), R(t′) = + ou R(t′) = ·} ,

qui est bien défini comme plus petit élément d’une partie non vide de N, et on se donne un t′ ∈ ST(t) tel
que R(t′) ∈ {+, ·} et H(t′) = hmin. Alors le premier argument de la racine de t′ est de hauteur h ⩽ hmin − 1,
donc si sa propre racine était + ou ·, on aurait hmin ⩽ h ⩽ hmin − 1... exclu ! Cette racine est donc soit 0,
soit s, ce qui permet d’appliquer l’une des quatre règles de réécriture.

La terminaison est plus délicate. Pour identifier un variant, on donne un poids à chaque terme de T(P),
en s’inspirant de la notion d’interprétation polynomiale définie dans [BN98].

Définition 13. On définit le poids des termes de T(P) par les formules suivantes, pour tout (x, y) ∈ T(P)2.

⟨0⟩ = 1 ⟨s(x)⟩ = ⟨x⟩+ 1 ⟨x+ y⟩ = 2⟨x⟩+ ⟨y⟩ ⟨x · y⟩ = ⟨x⟩2⟨y⟩+ 1

En particulier, ⟨t⟩ est un entier pour tout t ∈ T(P).

Lemme 14. Pour tout t ∈ T(P), ⟨t⟩ ⩾ 1.

Preuve. Montrons par induction structurelle sur t ∈ T(P) la proposition H(t) : « ⟨t⟩ ⩾ 1 ». H(0) est claire.
Soit (x, y) ∈ T(P)2 tel que H(x) et H(y). Alors ⟨s(x)⟩ = ⟨x⟩ + 1 ⩾ 2 ⩾ 1, ⟨x + y⟩ ⩾ 2 × 1 + 1 = 3 ⩾ 1 et
⟨x · y⟩ ⩾ 12 × 1 + 1 = 2 ⩾ 1. On a donc H(s(x)), H(x+ y) et H(x · y), ce qui conclut la récurrence.

Proposition 15. Pour chaque règle de réécriture r −→ r′ définie sur P, et pour toute substitution σ telle
que V(r) ⊆ supp(σ), ⟨r′σ⟩ < ⟨rσ⟩.

Preuve. Soit σ une substitution dont le support contient {x, y}. On pose t = σ(x) et t′ = σ(y). Vérifions les
quatre règles.

⟨0 + t′⟩ = 2 + ⟨t′⟩ > ⟨t′⟩ ⟨s(t) + t′⟩ = 2(⟨t⟩+ 1) + ⟨t′⟩ = 2 + 2⟨t⟩+ ⟨t′⟩ > 1 + 2⟨t⟩+ ⟨t′⟩ = ⟨s(⟨t⟩+ ⟨t′⟩)⟩

⟨0 · t′⟩ = 12 × ⟨t′⟩+ 1 = ⟨t′⟩+ 1 > 1 = ⟨0⟩ par le lemme 14

Pour la règle s(x) · y −→ y + (x · y), on a ⟨s(t) · t′⟩ = (⟨t⟩ + 1)2⟨t′⟩ + 1 = ⟨t′⟩⟨t⟩2 + 2⟨t⟩⟨t′⟩ + ⟨t′⟩ + 1 et
⟨t′ + (t · t′)⟩ = 2⟨t′⟩+ ⟨t⟩2⟨t′⟩+ 1. Comme 2⟨t⟩⟨t′⟩+ ⟨t′⟩ > 2⟨t′⟩ par le lemme 14, on trouve bien ⟨s(t) · t′⟩ >
⟨t′ + (t · t′)⟩.

5

Lemme 16. Soit C un contexte sur P et (t, t′) ∈ T(P)2. Supposons que ⟨t′⟩ < ⟨t⟩. Alors ⟨C [t′]⟩ < ⟨C [t]⟩.

Schéma de preuve. On se donne (t, t′) ∈ T(P)2 tel que ⟨t′⟩ < ⟨t⟩ et on montre par induction structurelle sur
le contexte C la proposition ⟨C [t′]⟩ < ⟨C [t]⟩. La base est immédiate et l’induction se déduit de la stricte
croissance sur N∗ de x 7→ x+1, x 7→ 2x+y et x 7→ x2y+1 pour y ⩾ 1, ainsi que de y 7→ 2x+y et y 7→ x2y+1
pour x ⩾ 1.

Théorème 17 (Terminaison). Le système de réécriture défini sur P termine.

Preuve. Supposons avoir une suite (tn)n∈N de termes telle que ∀n ∈ N, tn −→ tn+1, et fixons n ∈ N. On note
r −→ r′ et σ respectivement la règle et la substitution associés à la réécriture tn −→ tn+1. Par la proposition
15, ⟨r′σ⟩ < ⟨rσ⟩, puis par le lemme 16, ⟨tn+1⟩ < ⟨tn⟩. Ainsi, la suite (⟨tn⟩)n∈N est strictement décroissante
et à valeurs dans N∗... absurde ! Donc le système de réécriture termine.

3 Encodage des algèbres en π-calcul

3.1 Présentation du π-calcul et équivalence comportementale
Introduit en 1992 par l’informaticien britannique Robin Milner, le π-calcul (ou Pi-calcul) est une algèbre

de processus, autrement dit un langage formel ne servant pas à programmer en tant que tel, mais à modéliser
des processus pour en étudier des propriétés. Le π-calcul permet de représenter des systèmes concurrents
par passage de messages sur des canaux, c’est-à-dire constitués de plusieurs tâches qui s’exécutent
parallélement et peuvent s’échanger des messages sur des « canaux » dédiés. Il n’en modélise que la partie
observable, à savoir l’envoi et la réception de messages. Le π-calcul est en outre Turing-complet. Il existe
plusieurs variantes du π-calcul : celui que nous utilisons est le π-calcul polyadique avec réception répliquée,
tel qu’introduit dans le cours [DA14]. Certaines définitions, notamment celle de l’α-équivalence, proviennent
elles du livre [SW01], qui constitue l’ouvrage de référence en π-calcul.

Définition 18 (Noms). On dispose d’un ensemble dénombrable de noms (aussi appelés canaux), noté
N = {a, b, c, . . . , x, y, . . . }.

Définition 19 (Syntaxe du π-calcul). La syntaxe des processus en π-calcul est la suivante, écrite en forme
de Backus-Naur :

P,Q ::= 0 ∥ a⟨v1, . . . , vn⟩.P ∥ a(x1 . . . , xn).P ∥ !a(x1, . . . , xn).P ∥ P | Q ∥ P +Q ∥ (νc) P ,

où n ∈ N et a, c, vi et xi sont des canaux pour i ∈ J1, nK. L’ensemble des processus est noté Π.
— 0 est le processus nul : il ne fait rien.
— a⟨v1, . . . , vn⟩.P est le processus prêt à envoyer les noms v1, . . . , vn sur le canal a, puis à continuer

selon le processus P .
— a(x1, . . . , xn).P est le processus prêt à recevoir des noms x1, . . . , xn sur le canal a, puis à continuer

selon le processus P .
— !a(x1, . . . , xn).P (« réception répliquée ») est le processus prêt, une infinité de fois, à recevoir des

noms x1, . . . , xn sur le canal a pour ensuite continuer selon P .
— P | Q est le processus qui exécute P parallélement à Q.
— P + Q est le processus qui se poursuit soit comme P , soit comme Q, mais pas les deux en même

temps.
— (νc) P (restriction) est le processus P muni de la variable liée c.

Remarque 20.
(i) On peut parler de « terme » plutôt que de « processus ». Néanmoins, pour éviter les confusions, on

réserve ici ce mot aux éléments des algèbres de termes modélisées, et on garde celui de « processus »
pour les programmes écrits en π-calcul.

(ii) Les noms peuvent être liés à un processus de trois matières : par une réception, une réception répliquée
et une restriction. La convention de Barendregt demande que les noms liés soient distincts deux à deux
et distincts des noms libres, ce que permet l’α-équivalence des noms liés. Pour la définir, on introduit
d’abord une notion de substitution.

6

Définition 21 (α-équivalence des noms liés).
(i) Si, pour tout i ∈ J1, nK, le processus P ∈ Π ne contient aucune occurrence du nom xi, et que de plus

xi ̸= xj et yi ̸= yj pour tous i ̸= j, on note P [x1, . . . , xn/y1, . . . , yn] le processus obtenu à partir de P
en remplaçant, pour tout i ∈ J1, nK, toutes les occurrences du nom yi par le nom xi.

(ii) Un changement de noms liés dans un processus P est le remplacement d’un sous-terme a(y1, . . . , yn).Q
de P par a(x1, . . . , xn).Q[x1, . . . , xn/y1, . . . , yn], le remplacement d’un sous-terme !a(y1, . . . , yn).Q de
P par !a(x1, . . . , xn).Q[x1, . . . , xn/y1, . . . , yn] ou le remplacement d’un sous-terme (νy) Q de P par
(νx) Q,

(iii) On dit que P et Q sont α-équivalents si l’on obtient Q à partir de P par un nombre fini de changements
de noms liés.

(iv) Par convention, on considère deux processus α-équivalents comme égaux. Autrement dit, l’égalité =
est en fait définie sur les classes d’équivalence de la relation d’α-équivalence.

Remarque 22. La notion de « remplacement » n’a pas été ici formellement définie, mais elle est tout à fait
analogue à celle construite pour les systèmes de réécriture.

Notation 23. Soit n ∈ N.
(i) On n’écrit pas les terminaisons nulles des processus, c’est-à-dire que l’on note a⟨v1, . . . , vn⟩, a(x1, . . . , xn)

et !a(x1, . . . , xn) respectivement pour a⟨v1, . . . , vn⟩.0, a(x1, . . . , xn).0 et !a(x1, . . . , xn).0.
(ii) On pose (νc1 . . . cn) P = (νc1) . . . (νcn) P .
(iii) On pose

∑n
k=1 Pk = P1 + · · ·+ Pn et

∏n
k=1 Pk = P1 | . . . | Pn. Par convention, ces écritures désignent

le processus nul lorsque n = 0.

Les interprétations données dans la définition 19 sont une description informelle du sens des notations uti-
lisées, mais ne constituent pas une sémantique formelle. Pour cela, on dispose d’une congruence structurelle,
qui traduit l’égalité de deux processus, ainsi que de sémantiques de réduction et de transition.

Définition 24 (Congruence structurelle). La congruence structurelle du π-calcul, notée ≡, traduit l’égalité
entre deux processus et est donnée par les règles ci-dessous. En particulier, les lois + et | sont associatives
et commutatives sur l’ensemble quotient Π/≡, et elles admettent le processus nul 0 comme élément neutre.

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P + 0 ≡ P P +Q ≡ Q+ P

P + (Q+R) ≡ (P +Q) +R (νa) (νb) P ≡ (νb) (νa) P (νc) 0 ≡ 0

(νa) (P | Q) ≡ (νa) P | Q s’il n’y a aucune occurrence de a dans Q
P ≡ P ′

(νa) P ≡ (νa) P ′

P ≡ P ′

a⟨v1, . . . , vn⟩.P ≡ a⟨v1, . . . , vn⟩.P ′
P ≡ P ′

a(x1, . . . , xn).P ≡ a(x1, . . . , xn).P
′

P ≡ P ′

!a(x1, . . . , xn).P ≡ !a(x1, . . . , xn).P
′

P ≡ P ′ Q ≡ Q′

P | Q ≡ P ′ | Q′
P ≡ P ′ Q ≡ Q′

P +Q ≡ P ′ +Q′

Définition 25 (Sémantique de réduction). La sémantique de réduction modélise le comportement d’un
processus « en vase clos », c’est-à-dire la façon dont il se réduit sans interagir avec l’extérieur. Pour éviter
les confusions avec la relation −→ de la définition 9, on note P −→π P ′ lorsqu’il existe une réduction de P

7

vers P ′. On note de plus ∗−→π la clotûre symétrique transitive de −→π.

(Com) a(x1, . . . , xn).P | a⟨v1, . . . , vn⟩.Q −→π P [v1, . . . , vn/x1, . . . , xn] | Q

(Rep) !a(x1, . . . , xn).P | a⟨v1, . . . , vn⟩.Q −→π !a(x1, . . . , xn).P | P [v1, . . . , vn/x1, . . . , xn] | Q

(Sum)
P −→π P ′

P +Q −→π P ′ (Par)
P −→π P ′

P | Q −→π P ′ | Q
(Res)

P −→π P ′

(νa) P −→π (νa) P ′

(Cong)
P ≡ Q P ′ ≡ Q′ P −→π P ′

Q −→π Q′

Définition 26 (Processus terminant, forme normale). Soit P un processus. On introduit deux définitions
proches de celles qui existent sur une algèbre de termes.

(i) On dit que P est terminant s’il n’existe aucune suite (Pn)n∈N de processus telle que P = P0 et
∀n ∈ N, Pn −→π Pn+1.

(ii) On dit que P ′ est une forme normale de P si P ∗−→π P ′ et que P ′ n’admet aucune réduction.

Définition 27 (Sémantique de transition). La sémantique de transition décrit le comportement d’un pro-
cessus interagissant avec l’extérieur. Pour décrire ces interactions, on introduit les étiquettes ci-dessous.

α ::= av1, . . . , vn︸ ︷︷ ︸
Réception sur a de v1, . . . , vn

∥ av1, . . . , vn︸ ︷︷ ︸
Émission sur a de x1, . . . , xn

∥ a(v1, . . . , vn)︸ ︷︷ ︸
Émission de noms liés

∥ τ︸︷︷︸
Transition interne

On note P
α−→π P ′ lorsque P admet une transition vers P ′ en effectuant l’action α. Les règles de

transition sont données ci-dessous.

(Out) a⟨v1, . . . , vn⟩.P
av1,...,vn−→π P (In) a(v1, . . . , vn).P

av1,...,vn−→π P [v1, . . . , vn/x1, . . . , xn]

(Rep) !a(v1, . . . , vn).P
av1,...,vn−→π !a(v1, . . . , vn).P | P [v1, . . . , vn/x1, . . . , xn]

(Com)
P

av1,...,vn−→π P ′ Q
av1,...,vn−→π Q′

P | Q τ−→π P ′ | Q′ (Par)
P

α−→π P ′

P | Q α−→π P ′ | Q
(Sum)

P
α−→π P ′

P +Q
α−→π P ′

(Res)
P

α−→π P ′ aucune occurrence de a dans α

(νa) P
α−→π (νa) P ′ (Open)

P
av1,...,vn−→π P ′

(νv1, . . . , vn) P
a(v1,...,vn)−→π P ′

(Close)
P

av1,...,vn−→π P ′ Q
a(v1,...,vn)−→π Q′

P | Q τ−→π (νv1, . . . , vn) (P
′ | Q′)

(+ règles symétriques)

Pour α ̸= τ , on note de plus P
α

=⇒π P ′ s’il existe (n, p) ∈ N2, (Pi)i∈J0,nK et (P ′
j)j∈J0,pK tels que P0 = P ,

P ′
p = P ′, ∀i ∈ J0, n− 1K, Pi

τ−→π Pi+1, ∀j ∈ J0, p− 1K, P ′
j

τ−→π P ′
j+1 et Pn

α−→π P ′
0. Plus informellement, la

relation α
=⇒π correspond à τ−→π . . .

τ−→π
α−→π

τ−→π . . .
τ−→π.

On introduit enfin une relation d’équivalence comportementale appelée « bisimilarité faible » : deux
processus sont bisimilaires faibles lorsqu’ils interagissent de la même façon avec l’extérieur, aux transitions
internes près. Cette définition nous permettra par la suite de caractériser le fait qu’un processus encode un
terme d’une algèbre.

Définition 28 (Bisimilarité faible).

8

(i) Une relation binaire R ⊆ Π2 est appelée simulation faible si, pour toute étiquette α ̸= τ , pour tout
(P,Q) ∈ R et pour tout P ′ ∈ Π tel que P

α
=⇒π P ′, il existe Q′ ∈ Π tel que Q

α
=⇒π Q′ et P ′RQ′.

(ii) Une relation binaire B ⊆ Π2 est appelée bisimulation faible si B et B−1 = {(Q,P) | (P,Q) ∈ B} sont
des simulations faibles.

(iii) On dit que deux processus P et Q sont bisimilaires faibles, ce que l’on note P ∼ Q, s’il existe une
bisimulation faible B telle que PBQ.

La proposition suivante montre que la relation ∼ est la plus grande des bisimulations faibles, puisque
c’en est l’union par définition.

Proposition 29. La bisimilarité faible ∼ est une bisimulation faible.

Preuve. Soit P et Q tels que P ∼ Q (i.e. Q ∼−1 P) et une étiquette α ̸= τ . Alors on a une bisimulation
faible B telle que PBQ, i.e. QB−1P . Supposons avoir P ′ tel que P

α
=⇒π P ′. Comme B est une simulation

faible, il existe Q′ tel que Q
α

=⇒π Q′ et P ′BQ′, d’où P ′ ∼ Q′, ce qui montre que ∼ est une simulation faible.
Supposons maintenant avoir Q′ tel que Q

α
=⇒π Q′. Comme B−1 est une simulation faible, il existe alors P ′

tel que P
α

=⇒π P ′ et Q′B−1P ′, d’où Q′ ∼−1 P ′, ce qui montre de même que ∼−1 est une simulation faible
et conclut la preuve.

Proposition 30. La bisimilarité faible est une relation d’équivalence.

Preuve. La bisimilarité faible est réflexive car = est une bisimulation faible, et symétrique car si B est une
bisimulation faible, alors B−1 en est une également. Pour la transitivité, soit P , Q et R tels que P ∼ R et
R ∼ Q. On a donc deux bisimulations faibles B′ et B′′ telles que PB′R et RB′′Q, ce qui permet d’écrire
PBQ en posant B = {(P,Q) ∈ Π2 | ∃R ∈ Π, PB′R et QB′′R}. Il reste à vérifier que B est une bisimulation
faible. Soit donc (P,Q) ∈ B et une étiquette α ̸= τ . Alors on a R tel que PB′R et RB′′Q. Supposons avoir
P ′ tel que P

α
=⇒π P ′. Comme PB′R, on a R′ tel que R

α
=⇒π R′ et P ′BR′, et comme RB′′Q, on a Q′ tel

que Q
α

=⇒π Q′ et R′BQ′. Alors, par définition, P ′BQ′, et B est une simulation faible. En utilisant (B′)−1 et
(B′′)−1, on prouve de façon analogue que B−1 en est une également.

3.2 Encodage d’une algèbre de termes
On souhaite maintenant encoder en π-calcul les algèbres telles qu’elles ont été définies dans la première

section. L’intérêt est de pouvoir ensuite utiliser la puissance du π-calcul pour les manipuler, et en particulier
pour en calculer les réécritures. Cette démarche est analogue à ce qui est couramment fait en λ-calcul,
système formel également Turing-complet fondé sur les notions de fonction et d’application d’une fonction,
où l’on dispose de constructions usuelles pour les entiers (entiers de Church), les couples, les listes, ou
encore les arbres binaires. Le principe de la construction opérée vient de l’article [Cha19], avec deux légères
différences : les constante n’émettent, conformément à leur arité nulle, aucun argument sur le canal de retour
leur correspondant, et l’encodage d’un terme est défini comme un processus paramétré par un canal. On y
ajoute une nouveauté : la notion d’encodage inverse, permettant de traduire le fait qu’un terme est encodé
sur un canal.

Dans cette sous-section, on se donne une signature Σ = {(fi, ai)}i∈J1,nK.

Définition 31 (Encodage). Soit i ∈ J1, nK, (t1, . . . , tai) ∈ T(Σ)ai , et p un canal. L’encodage de t =
fi(t1, . . . , tai

) ∈ T(Σ) en π-calcul sur le canal p est défini récursivement comme le processus :

JtKp = !p(r1, . . . , rn).(νp1 . . . pai
) (
∏ai

k=1JtkKpk
| ri⟨p1, . . . , pai⟩) .

Ainsi, lorsque l’on dispose d’un canal p et que l’on souhaite décomposer le terme t encodé dessus, il faut
procéder comme suit.

— Créer n canaux r1, . . . , rn et les envoyer sur p.
— Écouter sur ces canaux. Un seul d’entre eux, disons ri, va renvoyer un message, ce qui indique que la

racine de t est fi.
— Les ai canaux reçus sur ri sont les arguments de la racine. Si ai ̸= 0, il faut répéter l’opération sur

ces canaux pour poursuivre la décomposition.

9

Définition 32 (Encodage inverse). On dit que le processus P encode le terme t ∈ T(Σ) sur le canal p si
P ∼ JtKp.

Comme ∼ est une relation d’équivalence d’après la proposition 30, cela entraîne en particulier le fait que
JtKp encode t sur p, et donc que les définitions 31 et 32 sont bien cohérentes entre elles.

Exemple 33 (Arithmétique de Peano). On reprend la signature P de l’exemple 4. En renommant les canaux
de retour par souci de lisibilité, on obtient, pour tout (x, y) ∈ T(P)2 et tout canal p, l’encodage ci-dessous.

J0Kp = !p(z, s, a,m).z Js(x)Kp = !p(z, s, a,m).(νc) (JxKp1
| s⟨p1⟩)

Jx+ yKp = !p(z, s, a,m).(νp1p2) (JxKp1 | JyKp2 | a⟨p1, p2⟩)

Jx · yKp = !p(z, s, a,m).(νp1p2) (JxKp1
| JyKp2

| m⟨p1, p2⟩)

À partir de là, on souhaite pouvoir réécrire, en π-calcul, les expressions modélisées afin d’obtenir des termes
ne faisant intervenir que le zéro et l’opérateur « suivant ». Pour cela, on a besoin d’un service π-calcul qui
applique les règles de réécriture de la définition 11.

4 Traduction d’un système de réécriture en service π-calcul
On souhaite désormais créer un service π-calcul permettant de réécrire automatiquement les termes

d’une algèbre en fonction d’un système de réécriture donné. On se munit pour cette section d’une signature
Σ = {(fi, ai)}i∈J1,nK et d’un système de réécriture sur celle-ci. Pour tout i ∈ J1, nK, on note mi le nombre
de règles de réécriture dont la racine à gauche est fi, et ces règles sont notées rij −→ r′ij , pour j ∈ J1,miK.
Pour i ∈ J1, nK et j ∈ J1,miK, on note xij

1 , . . . , x
ij
pij

les éléments de V(rij).
Dans la sous-section 4.1, on présente les différents processus de l’algorithme de réécriture sous la forme de

schémas. Les processus en tant que tels sont donnés dans la sous-section 4.2. Un énoncé formel de correction
est proposé dans la sous-section 4.3.

4.1 Principe général
On construit dans un premier temps, pour i ∈ J1, nK et j ∈ J1,miK, un serveur appij (figure 3), chargé

d’appliquer la règle rij −→ r′ij à la racine d’un terme donné, si cela est possible. Il prend en entrée un canal
p sur lequel est encodé un terme t ∈ T(Σ) et deux canaux de retour p et q. Si t = rij

σ pour une substitution
σ telle que V(rij) ⊆ supp(σ), il émet sur r un canal p′ où est encodé r′ij

σ. Sinon, il émet un message vide
sur q.

On construit alors un serveur rec (figure 4), qui prend en entrée un canal p où est encodé un terme t,
ainsi que deux canaux de retour r et q. Dans le cas où t est réductible, il émet sur r un canal où est encodé
un terme t′ tel que t −→ t′. Dans le cas où t est irréductible, il émet un message vide sur q. Son principe
de fonctionnement est le suivant : on appelle récursivement rec sur les arguments de la racine de t, et on
cherche une réécriture applicable à la racine. Si une réécriture a été possible quelque part (au niveau de la
racine ou d’un sous-terme), on renvoie sur r le terme avec ses arguments réécrits. Sinon, on émet sur q.

Dans le cas où le système de réécriture est terminant, on peut en plus construire un serveur eval (figure
5) prenant en entrée un canal p sur lequel est encodé un terme t, ainsi qu’un canal de retour r sur lequel il
renvoie un canal où est encodé une forme normale t′ de t. Son fonctionnement est simple : appeler rec autant
de fois que nécessaire, jusqu’à obtenir un terme irréductible, ce qui arrive toujours dans le cas d’un système
de réécriture terminant.

4.2 Implémentation formelle
On définit ici formellement les processus π-calcul représentant les serveurs dont le fonctionnement est

décrit dans la sous-section 4.1. On les a séparés en sous-processus pour faciliter la lecture et car certains sont
définis récursivement.

Définition 34 (Serveur d’application d’une règle). Soit i ∈ J1, nK et j ∈ J1,miK.

10

Entrée
Canal p où est encodé t ∈ T(Σ)

Canaux de retour r et q

Comparaison terme/règle
La racine à gauche de la règle est...

Un opérateur de Σ
La racine du terme est...

Une variable xij
k

Le même opérateur
d’arité ⩾ 1

Le même opérateur
d’arité 0

Un autre
opérateur

Sauvegarde du
terme comme σ(xij

k)
Sortie

Émission sur q
Enregistrement
d’un « succès »

Sortie
Envoi sur r de p′ où est encodé r′ij

σ

Récursion sur
les arguments
des racines du
terme et de la

gauche de
la règle

Tous les
succès attendus

Toutes les
variables obtenues

Figure 3 – Principe de l’algorithme exécuté par appij

(i) Pour tout r ∈ ST(rij), le processus Identij(r) est défini récursivement selon la racine de r.
— Si R(r) = xij

k ∈ V, Identij(r) = xk⟨p⟩.
— Si R(r) = fk ∈ Σ0, Identij(r) = (νr1 . . . rn) (p⟨r1, . . . , rn⟩.(

∑
k′ ̸=k rk′(p1, . . . , pak′).f + rk.s)).

— Si R(r) = fk /∈ Σ0 ∪ V et r = fk(r1, . . . , rak
), alors :

Identij(r) = (νr1 . . . rn) (p⟨r1, . . . , rn⟩.(
∑

k′ ̸=k rk′(p1, . . . , pak′).f

+ rk(p1, . . . , pak
).
∏ak

k′=1 Identij(rk′)[pk′/p])) .

(ii) Pour tout r ∈ ST(r′ij) et tout canal c, on définit récursivement le processus TermeRéécritcij(r).
— Si R(r) = xij

k ∈ V, TermeRéécritcij(r) = xk(x).!c(r1, . . . , rn).x⟨r1, . . . , rn⟩.
— Si r = fk(r1, . . . , rak

) pour k ∈ J1, nK, alors :

TermeRéécritcij(r) = !c(r1, . . . , rn).(νc1 . . . cak
) (
∏ak

k′=1 TermeRéécritck′
ij (rk′) | rk⟨c1, . . . , cak

⟩) .

(iii) On définit alors le processus Servappij
par :

Servappij
= !appij(p, r, q).(νx1 . . . xpij

sfc) (Identij(rij) | f.q
| s. · · · .s︸ ︷︷ ︸

m fois

.x1(t1). · · · .xpij (tpij).(TermeRéécritcij(r
′
ij) | r⟨c⟩)) ,

où m = |C(rij)| − |V(rij)|.

Définition 35 (Serveur de réécriture).
(i) Soit i ∈ J1, nK. Le processus RecOpi est défini par :

RecOpi = (
∏mi

j=1 appij⟨p, r′, q′⟩ |
∏ai

k=1 rec⟨pk, rk, qk⟩).

((
∑ai

k=1(rk(p
′
k).(νp

′) (!p′(r′1, . . . , r
′
n).r

′
i⟨p1, . . . , pk−1, p

′
k, pk+1, . . . , pai

⟩ | r⟨p′⟩))
+ r′(p′).r⟨p′⟩) | q′. · · · .q′︸ ︷︷ ︸

mi fois

.q1. · · · .qai
.q) .

11

Entrée
Canal p où est encodé t = fi(. . .) ∈ T(Σ)

Canaux de retour r et q

Tentative d’application des règles
Appel aux appij pour j ∈ J1,miK

Rappels récursifs
Appel à rec pour chaque argument de fi

Choix non déterministe
Encodage de t′ tel que t −→ t′ sur p′

Sortie
Envoi de p′ sur r

Sortie
Émission sur q

Au moins une
réponse positive

Toutes réponses
négatives

Figure 4 – Principe de l’algorithme exécuté par rec

Entrée
Canal p où est encodé t ∈ T(Σ)

Canal de retour r

Tentative de réécriture
Appel à rec

Sortie
Envoi de p sur r

Rappel récursif
Envoi de p′ et r à eval

ImpossibleRéception de p′

Figure 5 – Principe de l’algorithme exécuté par eval

(ii) On définit alors le processus Servrec par :

Servrec = !rec(p, r, q).(νc1 . . . cn) (p⟨c1, . . . , cn⟩.
∑n

i=1(ci(p1, . . . , pai).(νr
′q′r1q1 . . . raiqai) RecOpi))

|
∏n

i=1

∏mi

j=1 Servappij
.

Définition 36 (Serveur d’évaluation). Si le système de réécriture défini sur Σ est terminant, on définit le
processus Serveval par :

Serveval = !eval(p, r).(νr′q) (rec⟨p, r′, q⟩.(q.r⟨p⟩+ r′(p′).eval⟨p′, r⟩)) | Servrec .

4.3 Correction
Je n’ai pas eu le temps de proposer une preuve de correction au cours du stage. Cette sous-section vise

uniquement à donner l’énoncé des théorèmes de terminaison et de validité des serveur rec et eval, en utilisant
la notion d’encodage inverse donnée dans la définition 32. Cela ouvre la voie à une future preuve.

Conjecture 37 (Terminaison et validité du serveur rec). Soit P un processus encodant t ∈ T(Σ) sur le canal
p. Alors il existe un unique processus Q tel que P | Servrec

recp,r,q−→π Q. De plus, ce processus Q est terminant,
et les trois points suivants sont vérifiés.

(i) Si t est irréductible, toute forme normale Q′ de Q est bisimilaire faible à P | Servrec | q.
(ii) Si t est réductible, toute forme normale Q′ de Q renvoie un terme t′ ∈ T(Σ) tel que t −→ t′, c’est-à-dire

qu’il existe un canal p′ et un processus P ′ encodant t′ sur p′ tels que Q′ r(p′)−→π≡ P | P ′ | Servrec.

12

(iii) Pour tout t′ ∈ T(Σ), t −→ t′ si et seulement s’il existe une forme normale Q′ de Q renvoyant t′ au
sens ci-dessus.

Conjecture 38 (Terminaison et validité du serveur eval). Supposons le système de réécriture défini sur Σ
terminant et soit P un processus encodant t ∈ T(Σ) sur le canal p. Alors il existe un unique processus Q tel
que P | Serveval

evalp,r−→π Q. De plus, ce processus Q est terminant et les deux points suivants sont vérifiés.

(i) Toute forme normale Q′ de Q renvoie une forme normale t′ de t, c’est-à-dire qu’il existe un canal p′

et un processus P ′ encodant t′ sur p′ tels que Q′ r(p′)−→π≡ P | P ′ | Serveval.
(ii) Pour tout t′ ∈ T(Σ), t′ est une forme normale de t si et seulement s’il existe une forme normale Q′ de

Q renvoyant t′ au sens ci-dessus.

4.4 Application à l’évaluation de l’arithmétique de Peano
Considérons la signature P de l’exemple 4 muni du système de réécriture de la définition 11. Par les sous-

sections précédentes, on a obtenu un serveur eval permettant de calculer les expressions de l’arithmétique
de Peano encodées en π-calcul. Le cas général ayant été traité, on ne va pas réécrire le code dans ce cas
particulier, mais l’utiliser pour implémenter de nouvelles fonctions sur les termes de T(P). On peut par
exemple créer des serveurs suiv et prec donnant le successeur et le prédécesseur d’un terme (en considérant
que le prédécesseur de 0 est 0).

Servsuiv = !suiv(n, r).(νpr′) (eval⟨n, r′⟩.r′(n′).(!p(z, s, a,m).s⟨n′⟩) | r⟨p⟩) | Serveval

Servprec = !prec(n, r).(νr′zsam) (eval⟨n, r′⟩.r′(n′).n′⟨z, s, a,m⟩.(z.r⟨n′⟩+ s(n′′).r⟨n′′⟩)) | Serveval

Pour le serveur prec, l’idée est que la forme normale d’un terme ne peut pas contenir d’additions et de
multiplications, et que seuls les cas où la racine est 0 ou s sont donc à traiter.

On peut également créer un serveur récursif permettant le calcul de la factorielle d’un entier.

Servfact = !fact(n, r).(νr′r′′pzsam) (eval⟨n, r′⟩.r′(n1).n1⟨z, s, a,m⟩.(z.(!p(z′, s′, a′,m′).s′⟨n1⟩ | r⟨p⟩)
+ s(n2).fact⟨n2, r

′′⟩.r′′(n3).(!p(z
′, s′, a′,m′).m′⟨n1, n3⟩ | eval⟨p, r⟩))) | Serveval

5 Conclusion

5.1 Bilan du travail réalisé
L’apport de ce travail est de proposer une implémentation de la théorie classique de la réécriture de

termes, développée dans [BN98], en π-calcul. Pour cela, j’ai repris le travail d’Amel Chadda dans [Cha19]
sur l’encodage des algèbres en π-calcul en y ajoutant une notion d’encodage inverse, puis j’ai écrit un serveur
réécrivant un terme lorsque cela est possible suivant un système de réécriture donné. Ce serveur utilise la
théorie de la concurrence pour tester toutes les règles en même temps et fait un choix non déterministe parmi
les réécritures possibles, de sorte que chacune d’entre elles corresponde à une π-réduction réalisable. J’ai de
plus introduit les notions nécessaires afin que la terminaison et la validité de cette implémentation puissent
être énoncées formellement. En revanche, je n’ai pas eu le temps de me pencher sur sa preuve, et ce serait la
première chose à faire pour poursuivre ce stage.

Par la suite, plusieurs applications de cet encodage peuvent être envisagées, comme la réécriture de
l’arithmétique de Peano, exemple pris tout au long de l’article, mais aussi de manière plus générale la
traduction de toute fonction calculable sur les algèbres de termes en π-calcul, dans la mesure où la réécriture
de termes est Turing-complète. On pourrait également implémenter en Go les systèmes de réécriture. L’article
[Cha19] propose une bibliothèque de services manipulant les algèbres en Go, à partir du compilateur de π-
calcul créé par Marco Guinti. Le travail restant est donc l’écriture en Go des définitions de la sous-section
4.2.

13

Une dernière idée serait d’étendre le travail d’encodage des algèbres et de leurs réécritures à des structures
plus complexes en ajoutant des conditions sur les arguments des opérateurs. Si Σ est une signature, on
pourrait encoder des listes d’éléments de T(Σ) en considérant la signature Σ∪{(v, 0), (ℓ, 2)}, où v désignerait
une liste vide et ℓ un opérateur d’ajout d’un élément prenant un premier paramètre de racine v ou ℓ et un
second dans T(Σ). On exigerait de plus que les opérateurs de Σ ne prennent que des éléments de T(Σ)
en arguments. Partitionner ainsi la signature ne pose pas de difficulté supplémentaire, et cette démarche
ouvrirait une voie amusante : la possibilité d’encoder le π-calcul et sa sémantique de réduction en π-calcul.

5.2 Apport personnel du stage
Ce stage a été réalisé en septembre 2021, avant ma troisième année de licence de mathématiques à Berlin

qui ne commençait que mi-octobre. Il n’était pas prévu dans mon cursus et je remercie tout particulièrement
Romain Demangeon d’avoir accepté de l’encadrer. Pour cela, j’ai suivi durant l’été des enregistrements
vidéo de ses cours donnés en master, afin d’avoir une certaine connaissance du sujet avant de commencer le
stage.

Je suis intéressé aussi bien par les mathématiques que par l’informatique, donc la découverte d’un sujet –
les algèbres de processus et plus généralement l’informatique théorique – croisant des deux matières m’a été
très utile pour affiner mon projet d’orientation. Étant en licences de mathématiques et de sciences sociales
dans le cadre d’un double cursus, je n’avais pas eu beaucoup de cours d’informatique et être dans ce cadre
pendant un mois, lors duquel j’ai aussi assisté à des cours de master, m’a permis de fortement progresser.
Enfin, ce stage dans un laboratoire a été une opportunité de découvrir ce qu’est vraiment la recherche,
en échangeant avec mon maître de stage, d’autres chercheurs et doctorants du LIP6, et en assistant à une
soutenance de thèse.

Mon projet de recherche, qui m’a amené à introduire de nouveaux objets ou à en réinventer certains
existants (je n’ai pu me procurer un exemplaire de [BN98] qu’après deux semaines de stage), m’a fait
prendre conscience de la difficulté de la définition formelle en mathématiques. La majorité de mon temps de
réflexion a servi à trouver des définitions ou à revenir sur celles déjà écrites afin de les rendre suffisament
rigoureuses, pertinentes mais aussi « canoniques ». Les cours de licence nous apprennent à démontrer des
résultats, mais pas tellement à imaginer des définitions puisque nous étudions des théories déjà construites.
Cette découverte a non seulement été une surprise pour moi, mais aussi une occasion de beaucoup progresser
en formalisme. Je pense avoir amélioré ma perception du niveau de rigueur nécessaire dans un contexte assez
éloigné de celui d’un exercice de mathématiques.

6 Références
[BN98] Franz Baader et Tobias Nipkow : Term rewriting and all that. Cambridge University Press, 1998.
[Cha19] Amel Chadda : Analyse d’efficacité de services en π-calcul. Rapport de stage au LIP6, 2019.
[DA14] Romain Demangeon et Carlos Agon : Paradigmes de programmation concurrente. Cours de M2

à Sorbonne Université, 2014.
[SW01] Davide Sangiorgi et David Walker : The π-calculus : a theory of mobile processes. Cambridge

University Press, 2001.

14

	Introduction
	Algèbres et réécriture
	Algèbres de termes
	Systèmes de réécriture
	Cas de l'arithmétique de Peano

	Encodage des algèbres en Pi-calcul
	Présentation du Pi-calcul et équivalence comportementale
	Encodage d'une algèbre de termes

	Traduction d'un système de réécriture en service Pi-calcul
	Principe général
	Implémentation formelle
	Correction
	Application à l'évaluation de l'arithmétique de Peano

	Conclusion
	Bilan du travail réalisé
	Apport personnel du stage

	Références

