Encodage de la réécriture de termes en m-calcul
Rapport de stage de L2

Guillaume CHIRACHE
Encadré par Romain DEMANGEON
Laboratoire d’informatique de Paris 6
Sorbonne Université

Septembre 2021

Table des matiéres

(1__Introduction| 1
|2 Algébres et réécriture) 2
2.1 Algebres de termes| L e 3
2.2 Systémes de réécriture] L L Lo e e e e e 3
2.3 Cas de 'arithmétique de Peano|, 5
|3 Encodage des algébres en m-calcul| 6
[3.1 Présentation du m-calcul et équivalence comportementale] 6
3.2 Encodage d'une algébre de termes| 9
|4 Traduction d’un systéeme de réécriture en service w-calcull 10
4.1 Principe générall 10
E2 Tmplémentation formelle] 10
B3 Correctionl . « . . o v oo e 12
4.4 Application a I'évaluation de I'arithmétique de Peano|. 13
6_Conclusion 13
b1 Bilan du travail réalisél 13
b.2 Apport personnel du stage|. Lo 14
[6_Références 14

1 Introduction

On considére une algébre, c’est-a-dire une structure algébrique dont ’ensemble 7" des termes est construit
a partir d’une liste finie de constantes et d’opérateurs admettant un certain nombre de termes en arguments.
On souhaite étudier la manipulation des éléments de T en programmation concurrente. Pour cela, il est
utile de les représenter en m-calcul, qui est un langage formel servant & modéliser des systémes concurrents.
C’est ce qu’a fait Amel CHADDA lors de son stage de L3 au LIP6 en juin-juillet 2019. Son rapport [Chal9]
propose une maniére d’encoder les termes de telles algébres en m-calcul, dont on donne une version légérement
modifiée dans la définition Pour poursuivre ce travail, on souhaite effectuer des calculs, dans un cadre
le plus général possible, sur ces termes. Le probléme qui se pose est représenté dans la figure [1] : comment
représenter une application f : T™ — T en m-calcul pour pouvoir I'appliquer aux termes encodés ?

En mathématiques, une telle application est définie de facon ensembliste par une relation qui a tout
élément de T associe un unique terme de T'. Cette définition n’est pas utilisable directement en informatique,

Mathématiques t1,...,tn }

fltr, ... tn)

[,)l]

| Encodage sur pi,...,pn ‘

l

rcaleul ([0l |- | [tal,

-

FIGURE 1 — Comment représenter f : 7" — T en m-calcul 7

car elle ne dit comment obtenir f(t1,...,t,) & partir de ¢1,...,t,, ni méme si ce calcul est réalisable par un
ordinateur. Il est nécessaire de disposer d’'un modéle de calcul indiquant comment passer d’un élément & son
image par des opérations élémentaires. Pour cela, on fait le choix d’utiliser la réécriture de termes, sur
laquelle 'ouvrage [BN98] constitue une référence. Plutot que de définir une application 7" — T, on ajoute
un opérateur d’arité n, et on explicite sa manipulation a travers des régles de réécriture. On peut ainsi évaluer
les termes en leur appliquant des régles de réécriture jusqu’a obtenir un terme irréductible appelé « forme
normale ». L’intérét de cette approche est double : d’une part, les régles de réécriture indiquent explicitement
comment passer d’un terme a un autre, ce qui permet de les transcrire en algorithme. D’autre part, on ne
perd pas en expressivité par rapport & ce qui est possible sur un ordinateur puisque la réécriture constitue
un modéle de calcul Turing-complet. Cela signifie qu’elle permet de modéliser toute opération calculable par
une machine de Turing, ce qui correspond & la notion « naturelle » de calculabilité dont la thése de Church
postule I'existence.

Mathématiques 4 Evaluation en une forme normale }—’

E
m-caleul —{ Appel paralléle au serveur eval }—» (vr) (eval(p,r).r(p"))

FIGURE 2 — L’implémentation réalisée

Mon travail, réalisé au LIP6 en septembre 2021 et encadré par Romain DEMANGEON, a consisté & m’appro-
prier les notions abordées dans cette introduction (7-calcul, systémes de réécriture et encodage des algébres),
a les adapter légérement pour en produire une présentation cohérente, puis & implémenter le serveur eval
décrit dans la figure 2] Afin d’ouvrir la voie & une future preuve de cette implémentation, j’ai proposé un
énoncé de correction (conjectures et , ce qui a nécessité la création d’'une notion d’encodage inverse
(définition . Pour illustrer les notions présentées, j’ai pris comme exemple tout au long de ’article la ré-
écriture de l'arithmétique de Peano permettant d’en calculer les additions et multiplications, dont j’ai aussi
prouvé la terminaison et la validité.

La section [2] introduit formellement les notions mathématiques d’algebre et de réécriture sur ses termes,
puis la section [3] présente le w-calcul et 'encodage des algebres dans ce langage. Enfin, la section [4] présente
la traduction des régles de réécriture en un service m-calcul.

2 Algébres et réécriture

Dans cette section, on introduit les notions mathématiques d’algébre et de réécriture, que nous allons
ensuite modéliser en m-calcul. Une algébre est un objet exclusivement syntaxique, tandis que la réécriture
est un modéle de calcul permettant de lui associer une sémantique. Mon travail ici a consisté & m’approprier
ces notions et & produire une définition formelle et cohérente des définitions associées, dans la mesure ou
celles-ci sont introduites différemment selon les références.

2.1 Algébres de termes

Une algebre de termes (ou, en informatique, simplement « algébre ») est une structure algébrique dont
les éléments (termes) sont construits a partir d’une liste bien définie d’opérateurs munis d’une arité (un
nombre d’arguments attendus). Pour définir formellement les constructions autorisées, on introduit la notion
de signature.

Définition 1 (Signature).
(i) On dispose d’un ensemble dénombrable S de symboles.

(ii) Une signature ¥ est un ensemble fini de couples (f,a) € S x N, constitués d’un symbole f appelé
opérateur et d’'un entier naturel a appelé arité de 'opérateur, et tel que pour tout ((f,a), (g,b)) € ¥2,
atb = f#g.

(iii) Pour a € N, on note ¥, = {f € S| (f,a) € £} I'ensemble des opérateurs de ¥ d’arité a.

(iv) Les opérateurs de ¥y, qui n’admettent aucun argument, sont appelés constantes.

Définition 2 (Algebre). On définit inductivement I’algébre sur la signature ¥, dont I’ensemble des termes
est noté T(X), par :
V(f,a) € B, V(t1,...,tqs) € T(X), f(t1,...,ta) € T(D).

Remarque 3. Informellement, cela signifie qu’un terme ¢ € T(X) est un opérateur appliqué a autant de termes
que son arité le demande. Cette définition inclut le cas de base Xy C T(X), qui correspond a a = 0. Le cas
dégénéré ou la signature ne comporte aucune constante n’est pas interdit, mais présente peu d’intérét car

Exemple 4 (Entiers naturels et arithmétique de Peano). On peut construire I’ensemble des entiers naturels
comme l'algébre de signature {(0,0), (s,1)}, en considérant que la constante 0 désigne le zéro et que s est
Popérateur « suivant », de sorte que pour tout entier n > 0, n est désigné par le terme s™(0).

La signature P = {(0,0), (s, 1), (+,2), (+,2)}, obtenue en ajoutant deux opérateurs + et - d’arité 2, permet
de construire ’ensemble des expressions de 'arithmétique de Peano, c’est-a-dire celles constituées d’additions
et de multiplications sur des entiers naturels. Ainsi, le terme s%(0) - (s(0) + s3(0)) représente 1’expression
2. (14 3). La structure d’algébre ne permet cependant pas de traduire le fait que 2- (14 3) = 8, ce qui nous
ameénera a introduire la réécriture.

On peut concevoir un terme d’une algébre comme une arborescence dont les feuilles sont des constantes,
les neeuds internes des opérateurs d’arité non nulle, et la racine le dernier opérateur utilisé. Cela justifie
Iintroduction des définitions suivantes.

Définition 5. Soit ¥ une signature. Pour tout (f,a) € ¥ et tout terme ¢ € T(X) tel que t = f(t1,...,tq)
avec (t1,...,t,) € T(X)?, on définit récursivement I’ensemble des symboles S(t), celui des sous-termes ST(t),
la taille T(t) et la hauteur H(¢) de ¢, ainsi que le nombre O(¢, g) d’occurences d’un opérateur g de ¥ dans ¢
par les formules ci-dessous.

S(t) = {f}u (U S(ti)> ST(t) = {t} U (U ST(ti)) (1) =1+ Y T(L)

i=1 =1

14+>¢ ,0(ti,9) sif=gy

H(t) =14+ max H(¢;) O(t,g) = {Z?‘_ Oti.) on

i€[1,a]
On appelle de plus racine de ¢ et on note R(¢) Popérateur f. Enfin, on définit ensemble des constantes de ¢

comme C(t) = S(t) N Xo.

2.2 Systémes de réécriture

La réécriture (ou récriture) dans une algébre est un cadre formel permettant d’en transformer les termes
par 'application de régles précises et calculables. Elle permet de donner une sémantique a une structure

exclusivement syntaxique. Ainsi, en reprenant l’exemple on souhaite par exemple évaluer s2(0)-(s(0)+53(0))
en s5(0).

Pour définir formellement ces régles et leurs applications, on doit introduire plusieurs objets. L’idée
globale est la suivante : une variable permet de désigner un terme quelconque, une substitution permet de
remplacer les variables par des termes, et un contexte permet de situer, parmi les sous-termes d’un élément,
celui ou 'on applique une régle de réécriture.

Définition 6 (Algébre munie de variables, substitution).
(i) On dispose d’un ensemble dénombrable V de « variables », tel que SNV = @.
(ii) L’algébre munie de variables sur la signature X, dont l’ensemble des termes est noté T(X,V), est

informellement 1’algébre obtenue en ajoutant les variables aux constantes de X. Formellement, on la
définit inductivement par les formules ci-dessous.

1% c T(E,V) V(f,a) € E, v(rla”-ara) € T(27V)aa f(rlv"'7ra) € T(E,V)

(iii) Pour r € T(X,V), on définit S(r), ST(r), T(r), H(r), O(r,-), R(r) et C(r) de la méme maniére que dans
la définition [5} en considérant les variables comme des opérateurs d’arité nulle. On définit I’ensemble
V(r) des variables de r par V(r) = C(r) N V.

(iv) Une substitution est une application o : V — T(X,V) dont le support supp(c) = {z € V | o(x) # =}
est fini et telle que o(supp(o)) C T(X).

(v) SireT(X,V) et que V(r) C supp(c), on note 7 le terme de T(X) obtenu en remplagant les variables

de r selon o. Formellement, si » € supp(o), 7 = o(r), et si r = f(r1,...,7q) avec (f,a) € X et
(r1,...,1q) € T(E, V)% 17 = f(r17,...,74%).

Définition 7 (Contexte, instance).

(i) Un contexte € sur ¥ est informellement un terme de T(X) auquel un unique sous-terme, noté A, est
manquant. Formellement, un contexte est soit le symbole A, soit un objet de la forme f(t1,...,t,), ou
(f,a) € ¥ et il existe i € [1,a] tel que t; est un contexte et que Vj # i, t; € T(X).

(ii) Si % est un contexte sur ¥ et u € T(X), on appelle instance de € de paramétre u et on note €[u] le
terme obtenu en remplacant A dans € par u. Formellement, pour tout u € T(X), on pose Afu] = u et
pour tout (f,a) € ¥ et tout contexte € tel que € = f(t1,...,tq), on i € [1,a] est tel que t; est un
contexte, €[u] = f(..., ti—1, tifu], tiv1,...).

Définition 8 (Systéme de réécriture).
(i) Une régle de réécriture r — 7/ sur la signature ¥ est la donnée d’un couple de termes (r,7') € T(%,V)?

tel que r n’est pas une variable, que toutes les variables de r y apparaissent une unique fois et que
toutes les variables de v’ apparaissent dans 7, i.e. r € V, Vo € V(r), O(r,z) = 1 et V(r') C V(7).

(ii) Un systéme de réécriture sur ¥ est un ensemble fini de régles de réécriture sur 3.

Définition 9 (Reégle applicable, terme réductible, forme normale).
(i) On dit que t € T(X) se réécrit en t' € T(X), ce que on note t — ¢, s’il existe une régle r — r/, une
substitution o et un contexte ¢ sur X tels que t = €' [r?] et t' = €[r'7].

(ii) Un terme ¢t € T(X) est dit réductible s’il existe t' € T(X) tel que t — t/, et irréductible dans le cas
contraire.

(iii) On note — la clotiire symétrique transitive de —, c’est-a-dire que t — t’ si et seulement s’il existe
n € N et (tg)refo,ng € T(X)"H tels que to = ¢, t, =t' et Vk € [0,n — 1], t — tpq1.

(iv) On dit que ¢’ € T(X) est une forme normale de ¢t € T(X) si t — ¢’ et que ' est irréductible.

Evaluer un terme consiste donc a lui appliquer des régles de réécriture, de facon potentiellement non
déterministe s’il y a plusieurs possibilités, jusqu’a obtenir une forme normale. Si le processus de réécriture
aboutit toujours en un nombre fini d’étapes, le systéme de réécriture est dit terminant.

Définition 10 (Systéme de réécriture terminant). Un systéme de réécriture sur est terminant s’il n’existe
aucune suite (t,)nen € T(Z)N telle que pour tout n € N, ¢, — t,41.

2.3 Cas de ’arithmétique de Peano

On reprend la signature P = {(0,0), (s,1), (+,2), (-,2)} définie & l’exemple et on la munit d’un systéme
de réécriture pour pouvoir calculer la valeur des expressions de T(P).

Définition 11 (Réécriture sur l'arithmétique de Peano). On munit la signature P des régles de réécriture
ci-dessous, ou (r,y) € V2.

O+y—vy s(z)+y — s(x+vy) 0-y—0 s(x) - y—y+(x-y)

Ces quatre régles de réécriture sont compatibles avec les lois + et - sur N puisqu’étant donné la description
des opérateurs 0 et s dans I'exemple [d] elles s’interprétent respectivement comme les égalités 0 + p = p,
m+1)+p=mMm+p) +1,0-p=0et (n+1)-p=p+ (n-p), qui sont bien vérifices pour tout (n,p) € N2.
Ainsi, si t — t' et, par récurrence immeédiate, si ¢t —s ¢/, les expressions modélisées par ¢ et ¢’ ont la méme
valeur.

Montrons maintenant que ce systéme de réécriture a de bonnes propriétés. En particulier, il est terminant,
et calcule effectivement les opérations contenues dans les termes, de sorte que les termes irréductibles ne
contiennent pas d’additions et de multiplications.

Proposition 12. Sit € T(P) est irréductible, alors O(t,+) = O(¢,-) = 0.
Preuve. Montrons la contraposée : soit t € T(P) tel que O(¢t,+) + O(¢,-) = 1. On pose :
hmin = min{H(#') | ¢’ € ST(¢), R(t') = + ouR(t') = -},

qui est bien défini comme plus petit élément d’une partie non vide de N, et on se donne un ¢’ € ST(¢) tel
que R(t') € {+, -} et H(t') = hppin. Alors le premier argument de la racine de ¢’ est de hauteur h < hp, — 1,
donc si sa propre racine était 4+ ou -, on aurait Amin < b < hmin — 1... exclu! Cette racine est donc soit 0,
soit s, ce qui permet d’appliquer I'une des quatre régles de réécriture. O]

La terminaison est plus délicate. Pour identifier un variant, on donne un poids a chaque terme de T(P),
en s'inspirant de la notion d’interprétation polynomiale définie dans [BN9S].

Définition 13. On définit le poids des termes de T(P) par les formules suivantes, pour tout (z,y) € T(P)?.
0)=1 (s(2)) = () +1 (x+y) =2(z) + (v) (@ y) = (2)*(y) +1
En particulier, (t) est un entier pour tout ¢ € T(P).

Lemme 14. Pour tout t € T(P), (t) > 1.

Preuve. Montrons par induction structurelle sur ¢ € T(P) la proposition H(t) : « (t) = 1 ». H(0) est claire.
Soit (z,y) € T(P)? tel que H(x) et H(y). Alors (s(z)) = (x) +1 22> 1, (z+y)=>2x1+1=3>1et
(x-y) 212 x1+1=22>1. Onadonc H(s(z)), H(z +y) et H(z-y), ce qui conclut la récurrence. O

Proposition 15. Pour chaque régle de réécriture r — v’ définie sur P, et pour toute substitution o telle
que V(r) C supp(o), (r'7) < (r7).

Preuve. Soit o une substitution dont le support contient {z,y}. On pose t = o(x) et ¢’ = o(y). Vérifions les
quatre régles.

O+t =2+ () > ({) (s(t) +ty=2({t) + 1)+ (') =24+ 2(t) + {t') > 1+ 2(t) + (') = (s((t) + (t')))
O0-Y=1*x{#)+1=()+1>1=(0) parlelemme[[]]

Pour la régle s(x) -y — y+ (z-y), on a (s(t) - ') = ((t) + 1)2{t') +1 =) &)2 + 2(t) (') + (') + 1 et
"+ (t-t)) =2(t') + {)*(t') + 1. Comme 2{t)(t') + (¢ (') par le lemme [14} on trouve bien (s(t) - t') >
'+ (t-t). O

-~
vV
[\

Lemme 16. Soit € un contexte sur P et (t,t') € T(P)2. Supposons que (') < (t). Alors (€[t']) < (€[t]).

Schéma de preuve. On se donne (t,t') € T(P)? tel que (t') < (t) et on montre par induction structurelle sur
le contexte % la proposition (€[t']) < (€[t]). La base est immédiate et 'induction se déduit de la stricte
croissance sur N* de z — z+1, 2 — 2z 4y et © — 2?y+1 pour y > 1, ainsi que de y — 2z +y et y — 22y +1
pour x > 1. O

Théoréme 17 (Terminaison). Le systéme de réécriture défini sur P termine.

Preuve. Supposons avoir une suite (¢,)nen de termes telle que Vn € N, t,, — t,,11, et fixons n € N. On note
r — 1’ et o respectivement la régle et la substitution associés a la réécriture ¢,, —> t,+1. Par la proposition
(r'?)y < (r), puis par le lemme (tnt1) < (tn). Ainsi, la suite ({t,))nen est strictement décroissante
et & valeurs dans N*... absurde! Donc le systéme de réécriture termine. O

3 Encodage des algébres en m-calcul

3.1 Présentation du m-calcul et équivalence comportementale

Introduit en 1992 par 'informaticien britannique Robin MILNER, le 7-calcul (ou Pi-calcul) est une algébre
de processus, autrement dit un langage formel ne servant pas a programmer en tant que tel, mais & modéliser
des processus pour en étudier des propriétés. Le m-calcul permet de représenter des systémes concurrents
par passage de messages sur des canaux, c’est-a-dire constitués de plusieurs taches qui s’exécutent
parallélement et peuvent s’échanger des messages sur des « canaux » dédiés. Il n’en modélise que la partie
observable, & savoir I’envoi et la réception de messages. Le m-calcul est en outre Turing-complet. Il existe
plusieurs variantes du m-calcul : celui que nous utilisons est le 7-calcul polyadique avec réception répliquée,
tel qu’introduit dans le cours [DA14]. Certaines définitions, notamment celle de I’a-équivalence, proviennent
elles du livre [SWO1], qui constitue 'ouvrage de référence en m-calcul.

Définition 18 (Noms). On dispose d’un ensemble dénombrable de noms (aussi appelés canaux), noté

N ={a,b,c,...,z,y,...}.

Définition 19 (Syntaxe du m-calcul). La syntaxe des processus en m-calcul est la suivante, écrite en forme
de Backus-Naur :

P,Q =0 av,...,von).Plla(xy...,zn).P || la(z1,...,2,).P || P| Q| P+ Q| (vc) P,

oun € Net a, ¢, v; et x; sont des canaux pour i € [1,n]. L’ensemble des processus est noté II.
— 0 est le processus nul : il ne fait rien.

— a(vy,...,v,).P est le processus prét a envoyer les noms vy,...,v, sur le canal a, puis & continuer
selon le processus P.

— a(x1,...,x,).P est le processus prét a recevoir des noms 1, ...,x, sur le canal a, puis & continuer
selon le processus P.

— la(z1,...,x,).P (« réception répliquée ») est le processus prét, une infinité de fois, & recevoir des
noms x1,..., &, sur le canal a pour ensuite continuer selon P.

— P | Q est le processus qui exécute P parallélement & Q.

— P + (@ est le processus qui se poursuit soit comme P, soit comme (J, mais pas les deux en méme
temps.

— (ve) P (restriction) est le processus P muni de la variable liée c.

Remarque 20.

(i) On peut parler de « terme » plutot que de « processus ». Néanmoins, pour éviter les confusions, on
réserve ici ce mot aux éléments des algébres de termes modélisées, et on garde celui de « processus »
pour les programmes écrits en m-calcul.

(ii) Les noms peuvent étre liés & un processus de trois matiéres : par une réception, une réception répliquée
et une restriction. La convention de Barendregt demande que les noms liés soient distincts deux & deux
et distincts des noms libres, ce que permet ’a-équivalence des noms liés. Pour la définir, on introduit
d’abord une notion de substitution.

Définition 21 (a-équivalence des noms liés).

(i) Si, pour tout ¢ € [1,n], le processus P € II ne contient aucune occurrence du nom z;, et que de plus
x; # x; et y; # y; pour tous i # j, on note Plx1,...,2,/y1,...,Yn| le processus obtenu a partir de P
en remplagant, pour tout ¢ € [[1, nﬂ, toutes les occurrences du nom y; par le nom x;.

(ii) Un changement de noms liés dans un processus P est le remplacement d’un sous-terme a(yi, ..., yn).Q
de P par a(xy1,...,2n).Q[T1, ..., Tn/Y1s--.,Yn], le remplacement d’un sous-terme la(y1,...,yn).Q de
P par la(zy,...,2,).Qx1,...,20n/y1,.-.,yn] ou le remplacement d’un sous-terme (ry) @ de P par
(vz) Q,

(iii) On dit que P et @ sont a-équivalents si 'on obtient @ & partir de P par un nombre fini de changements
de noms liés.

(iv) Par convention, on considére deux processus a-équivalents comme égaux. Autrement dit, 1'égalité =
est en fait définie sur les classes d’équivalence de la relation d’a-équivalence.

Remarque 22. La notion de « remplacement » n’a pas été ici formellement définie, mais elle est tout & fait
analogue & celle construite pour les systémes de réécriture.

Notation 23. Soit n € N.

(i) On n’écrit pas les terminaisons nulles des processus, c’est-a-dire que 'on note a(v1, . .., vn), a(x1, ..., Ty)
et la(xy,...,x,) respectivement pour a(vy,...,v,).0, a(z1,...,2,).0 et la(z1,...,2,).0.
(ii) On pose (vey...cn) P = (ver) ... (ven) P.
iii) Onpose S 7 P, =P, +---+P, et [[1_, P. = P, |...| P,. Par convention, ces écritures désignent
k=1 k=1

le processus nul lorsque n = 0.

Les interprétations données dans la définition [19sont une description informelle du sens des notations uti-
lisées, mais ne constituent pas une sémantique formelle. Pour cela, on dispose d’une congruence structurelle,
qui traduit 'égalité de deux processus, ainsi que de sémantiques de réduction et de transition.

Définition 24 (Congruence structurelle). La congruence structurelle du m-calcul, notée =, traduit I’égalité
entre deux processus et est donnée par les régles ci-dessous. En particulier, les lois + et | sont associatives
et commutatives sur ’ensemble quotient IT/=, et elles admettent le processus nul 0 comme élément neutre.

Plo=P P|Q=Q|P P|(Q|R=(P|Q|R P+0=P P+Q=Q+P
P+(Q+R)=(P+Q)+R (va) (vb) P = (vb) (va) P (re) 0=0

rP=F
(va) P = (va) P’

(va) (P Q)= (va) P|Q s'iln’y aaucune occurrence de ¢ dans @

P=F P=F
a(vy,...,vn).P=alvy,...,v,). P a(zy,...,op).P=a(xy,...,x,).P
pP=pr rP=r QR=q rP=r QR=q
la(zy,...,2,).P =a(xy,...,2,).P PlQ=P|Q P+Q=P +Q

Définition 25 (Sémantique de réduction). La sémantique de réduction modélise le comportement d’un
processus « en vase clos », c’est-a-dire la facon dont il se réduit sans interagir avec l’extérieur. Pour éviter
les confusions avec la relation — de la définition |§|, on note P —, P’ lorsqu’il existe une réduction de P

vers P’. On note de plus —», la clottre symétrique transitive de — .
(Com) a(xy,...,2,).P|a{v,...,vn).Q —>x Plo1,...,0n/21,...,2,] | Q
(Rep) la(z1,...,zp).P|a{vy,...,00).Q —x la(z1,...,2,).P | Plor,...,0n/21,...,25] | Q

P—, P P—, P P—, P

(Sum) m (Par) PlQ—n P Q (Res) (va) P —, (va) J2g

P=qQ P =q P—,. P

(Cong) 0 5.0

Définition 26 (Processus terminant, forme normale). Soit P un processus. On introduit deux définitions
proches de celles qui existent sur une algébre de termes.

(i) On dit que P est terminant s’il n’existe aucune suite (P,)nen de processus telle que P = Py et
Vn €N, P, —sn Poii.

(ii) On dit que P’ est une forme normale de P si P —>, P’ et que P’ n’admet aucune réduction.

Définition 27 (Sémantique de transition). La sémantique de transition décrit le comportement d’un pro-
cessus interagissant avec l'extérieur. Pour décrire ces interactions, on introduit les étiquettes ci-dessous.

o= avy,...,Up I avi,...,Un I a(v,...,vn) | T
N~ — —— L
Réception sur a de v,...,vn Emission sur a de z1,...,2, Bmission de noms ligs ~ Lansition interne

On note P —%,. P’ lorsque P admet une transition vers P’ en effectuant l’action «. Les régles de
transition sont données ci-dessous.

avl,...,Un

(Out) a(vy,...,vn).P 33" P (In) a(vy,...,v,).P 250" Plog, ..., v0/21,. .., 0]
(Rep) la(vi,...,v,).P "5 a(vy, ..., 0n).P | Plot, ..., v0/T1,. .., 2]

p e pl Tt J Ry J Sy
(Com) _© Y (par) _ (Sum) — =
PlQ—,P|Q PlQ—P|Q P+Q—, P

P-5_pP aucune occurrence de a dans « p gt pr
(Res) . ; (Open) SEL—
(va) P — (va) P (vur,...,v,) P25 P

AV, Up a(viy...,0p)

P —r Pl Q —r Q/

(Close) —
P|Q—, (vur,...,v,) (P Q)

(+ regles symétriques)

Pour a # 7, on note de plus P ==, P’ §'il existe (n,p) € N2, (P;);c[o,n] €t (P})jcqo,p] tels que Py = P,

T

P, =P Vie[0,n—-1], P, —5r Piyq, V5 € 0,p— 1], Pl —5 Pl et P, —% .+ P}. Plus informellement, la

relation = correspond & — ... —r— i —n ... —r.

On introduit enfin une relation d’équivalence comportementale appelée « bisimilarité faible » : deux
processus sont bisimilaires faibles lorsqu’ils interagissent de la méme facon avec 'extérieur, aux transitions
internes prés. Cette définition nous permettra par la suite de caractériser le fait qu’un processus encode un
terme d’une algébre.

Définition 28 (Bisimilarité faible).

(i) Une relation binaire R C II? est appelée simulation faible si, pour toute étiquette a # 7, pour tout
(P,Q) € R et pour tout P’ € II tel que P ==, P’, il existe Q" € II tel que Q ==, Q' et P'RQ’.

(ii) Une relation binaire B C I12 est appelée bisimulation faible si B et B~ = {(Q, P) | (P, Q) € B} sont
des simulations faibles.

(iii) On dit que deux processus P et @ sont bisimilaires faibles, ce que ’on note P ~ @Q, s’il existe une
bisimulation faible B telle que PBQ.

La proposition suivante montre que la relation ~ est la plus grande des bisimulations faibles, puisque
c’en est 'union par définition.

Proposition 29. La bisimilarité faible ~ est une bisimulation faible.

Preuve. Soit P et Q tels que P ~ Q (i.e. @ ~~! P) et une étiquette o # 7. Alors on a une bisimulation
faible B telle que PBQ, i.e. QB~'P. Supposons avoir P’ tel que P ==, P’. Comme B est une simulation
faible, il existe Q' tel que @ ==, Q' et P'BQ’, d’ou P’ ~ Q', ce qui montre que ~ est une simulation faible.
Supposons maintenant avoir @’ tel que Q ==, Q’. Comme B~ est une simulation faible, il existe alors P’
tel que P ==, P’ et Q'B~'P’, dou Q' ~~! P’, ce qui montre de méme que ~~! est une simulation faible
et conclut la preuve. O

Proposition 30. La bisimilarité faible est une relation d’équivalence.

Preuve. La bisimilarité faible est réflexive car = est une bisimulation faible, et symétrique car si B est une
bisimulation faible, alors B~! en est une également. Pour la transitivité, soit P, Q et R tels que P ~ R et
R ~ Q. On a donc deux bisimulations faibles B’ et B” telles que PB'R et RB"(), ce qui permet d’écrire
PBQ en posant B = {(P,Q) € II? | 3R € 11, PB'R et QB"R}. 1l reste a vérifier que B est une bisimulation
faible. Soit donc (P, Q) € B et une étiquette o # 7. Alors on a R tel que PB'R et RB”(Q. Supposons avoir
P’ tel que P ==, P’. Comme PB'R, on a R tel que R ==, R’ et P'BR’, et comme RB"Q, on a Q' tel
que Q =>, Q' et R'BQ’. Alors, par définition, P'BQ’, et B est une simulation faible. En utilisant (B')~" et
(B")~t, on prouve de facon analogue que B~! en est une également. O

3.2 Encodage d’une algébre de termes

On souhaite maintenant encoder en m-calcul les algébres telles qu’elles ont été définies dans la premiére
section. L’intérét est de pouvoir ensuite utiliser la puissance du m-calcul pour les manipuler, et en particulier
pour en calculer les réécritures. Cette démarche est analogue & ce qui est couramment fait en A-calcul,
systéme formel également Turing-complet fondé sur les notions de fonction et d’application d’une fonction,
ol 'on dispose de constructions usuelles pour les entiers (entiers de Church), les couples, les listes, ou
encore les arbres binaires. Le principe de la construction opérée vient de larticle [Chal9], avec deux légéres
différences : les constante n’émettent, conformément & leur arité nulle, aucun argument sur le canal de retour
leur correspondant, et I’encodage d’un terme est défini comme un processus paramétré par un canal. On y
ajoute une nouveauté : la notion d’encodage inverse, permettant de traduire le fait qu’un terme est encodé
sur un canal.

Dans cette sous-section, on se donne une signature ¥ = {(f, ;) }iei,n]-

Définition 31 (Encodage). Soit i € [1,n], (t1,...,ts;) € T(X)%, et p un canal. L’encodage de ¢ =

fi(t1, ..., ta;) € T(X) en m-calcul sur le canal p est défini récursivement comme le processus :

[tlp = 'p(re,- o rn)-(vpr - - pa,) (TTei [tklpe | Tilprs - - pay)) -

Ainsi, lorsque 'on dispose d’un canal p et que ’on souhaite décomposer le terme ¢ encodé dessus, il faut
procéder comme suit.
— Créer n canaux ry, ..., 7, et les envoyer sur p.
— Ecouter sur ces canaux. Un seul d’entre eux, disons 7;, va renvoyer un message, ce qui indique que la
racine de t est f;.
— Les a; canaux regus sur r; sont les arguments de la racine. Si a; # 0, il faut répéter Uopération sur
ces canaux pour poursuivre la décomposition.

Définition 32 (Encodage inverse). On dit que le processus P encode le terme t € T(X) sur le canal p si
P~ [t]p.

Comme ~ est une relation d’équivalence d’aprés la proposition cela entraine en particulier le fait que
[t], encode t sur p, et donc que les définitions [31] et [32| sont bien cohérentes entre elles.

Exemple 33 (Arithmétique de Peano). On reprend la signature P de l’exemple En renommant les canaux
de retour par souci de lisibilité, on obtient, pour tout (z,y) € T(P)? et tout canal p, 'encodage ci-dessous.

[0], = p(2,s,a,m).Z [s(z)]p = p(z,s,a,m).(ve) ([x]p, | 5(p1))
[z +ylp = p(z,s,a,m).(vp1p2) ([]p, | [W]p. | @lp1,p2))

[z - ylp = p(2, 8, a,m).(vpip2) ([2]p, | [Y]p, | 2(p1,p2))

A partir de 14, on souhaite pouvoir réécrire, en m-calcul, les expressions modélisées afin d’obtenir des termes
ne faisant intervenir que le zéro et Iopérateur « suivant ». Pour cela, on a besoin d’un service m-calcul qui
applique les régles de réécriture de la définition [T1}

4 Traduction d’un systéme de réécriture en service m-calcul

On souhaite désormais créer un service m-calcul permettant de réécrire automatiquement les termes
d’une algébre en fonction d’un systéme de réécriture donné. On se munit pour cette section d’une signature
¥ = {(fi, ai) }ieq1,n) et d’'un systéme de réécriture sur celle-ci. Pour tout i € [1,7n], on note m; le nombre
de régles de réécriture dont la racine a gauche est f;, et ces régles sont notées r;; — rgj, pour j € [1,m;].

Pour i € [1,n] et j € [1,m;], on note =%/ . .. ,m;{j les éléments de V(r;).
Dans la sous-section on présente les différents processus de 'algorithme de réécriture sous la forme de
schémas. Les processus en tant que tels sont donnés dans la sous-section [£.2] Un énoncé formel de correction

est proposé dans la sous-section [4.3]

4.1 Principe général

On construit dans un premier temps, pour i € [1,n] et j € [1,m;], un serveur app,; (figure , chargé
d’appliquer la régle r;; — rgj a la racine d’un terme donné, si cela est possible. Il prend en entrée un canal
p sur lequel est encodé un terme ¢t € T(X) et deux canaux de retour p et ¢. Si t = r;;7 pour une substitution
o telle que V(r;;) C supp(o), il émet sur un canal p’ ou est encodé r;j". Sinon, il émet un message vide
sur gq.

On construit alors un serveur rec (figure , qui prend en entrée un canal p ou est encodé un terme t,
ainsi que deux canaux de retour r et ¢. Dans le cas ou t est réductible, il émet sur r un canal oil est encodé
un terme ¢’ tel que t — ¢’. Dans le cas ou t est irréductible, il émet un message vide sur ¢. Son principe
de fonctionnement est le suivant : on appelle récursivement rec sur les arguments de la racine de ¢, et on
cherche une réécriture applicable a la racine. Si une réécriture a été possible quelque part (au niveau de la
racine ou d’un sous-terme), on renvoie sur r le terme avec ses arguments réécrits. Sinon, on émet sur g.

Dans le cas ou le systéme de réécriture est terminant, on peut en plus construire un serveur eval (figure
prenant en entrée un canal p sur lequel est encodé un terme ¢, ainsi qu'un canal de retour r sur lequel il
renvoie un canal ol est encodé une forme normale ¢’ de ¢. Son fonctionnement est simple : appeler rec autant
de fois que nécessaire, jusqu’a obtenir un terme irréductible, ce qui arrive toujours dans le cas d’un systéme
de réécriture terminant.

4.2 Implémentation formelle

On définit ici formellement les processus w-calcul représentant les serveurs dont le fonctionnement est
décrit dans la sous-section [f.1] On les a séparés en sous-processus pour faciliter la lecture et car certains sont
définis récursivement.

Définition 34 (Serveur d’application d’une régle). Soit i € [1,n] et j € [1,m;].

10

Entrée
Canal p ou est encodé t € T(X)
Canaux de retour r et ¢
1
Comparaison terme/régle
Récursion sur La racine & gauche de la régle est...

les arguments

des racines du - /

terme et de la Un opérateur de X
gauche de La racine du terme est...

la régle / l \ Une variable a;zj

Le méme opérateur Le méme opérateur Un autre
d’arité > 1 d’arité 0 opérateur
Enregistrement Sortie Sauvegarde du
d’un « sucecés » | Emission sur ¢ | terme comme o(x;’)
Tous les Toutes les
succeés attendus variables obtenues
Sortie

Envoi sur r de p’ ot est encodé 77"

FIGURE 3 - Principe de I'algorithme exécuté par app, ;

(i) Pour tout r € ST(r;;), le processus Ident;;(r) est défini récursivement selon la racine de r.
— SiR(r) =z} €V, Ident;;(r) = T (p). _
— SiR(r) = fi € %o, Identy;(r) = (vry...mn) (B(r1s -5 7n)- Qi 7y (P15 -5 Pay,) f + 715)).
— SiR(r)=fe ¢ ZoUV et r= fr(ry,...,rq,), alors :
Ident;(r) = (vr1...mn) (B(ri, .-, mn)- (g sk rk,(pl, o Pag) f
+ k(P15 pay) Ty Tdenty; (ri) [pw /p]) -

(ii) Pour tout r € ST(;) et tout canal ¢, on définit récursivement le processus TermeRéécrity; (r).

— SiR(r)—xk € V TermeReéécrity; (1) = zx(2).le(r, ..., 70) T(r1, . .o, 7n).
— Sir= fg(r1,...,7q,) pour k € [[1 n], alors :

TermeReéécrity; (r) = le(ry, ...). (ver .. ca,) (T2 TermeRéécritf]’?' (rir) | Te{cay .-y Cap)) -
(iii) On définit alors le processus Serv,yyp, par :
Servapp, = lapp;;(p, 7, q).(va1 ... zp,;sfc) (Identy;(ri;) | f-q

| 8. .s.xi(ty). - xp,, (tp,,).(TermeRéécrits; (ri;) | 7(c)))

m fois
owm = |C(riz)| = |V (ri)l-
Définition 35 (Serveur de réécriture).

(i) Soit ¢ € [1,n]. Le processus RecOp, est défini par :

R‘ecopi = (H] 1 a’ppz]<p? > | Hk 1 rec<pk7rk7’qk>)

(O (rae(p})-(wp') (W (P 1) D1, - Dhm1s Dl Pt - - -5 Pay) | T(D'))
+r')TN ¢ d 00, q)
m; fois

11

Entrée
Canal p ou est encodé t = f;(...) € T(X)
Canaux de retour 7 et ¢

— T

Tentative d’application des régles Rappels récursifs
Appel aux app;; pour j € [1,m;] Appel a rec pour chaque argument de f;

Toutes réponses
négatives

Au moins une
réponse positive

Choix non déterministe Sortie
Encodage de t’ tel que t — ¢’ sur p’ Emission sur ¢
Sortie

Envoi de p’ sur r

FIGURE 4 — Principe de I’algorithme exécuté par rec

Entrée
Canal p ou est encodé t € T(X)
Canal de retour r

l
Rappel récursif Réception de p’ | Tentative de réécriture| Impossible Sortie
Envoi de p’ et r & eval Appel a rec Envoi de p sur r

FIGURE 5 — Principe de I'algorithme exécuté par eval

(ii) On définit alors le processus Serv,.. par :

Serviye. = lrec(p,r,q).(ver ... cn) ({cry .-) > g (Ci(p1s -y Pas)- (W' d'T1a1 - . .7, qa;) RecOp;))
n my
| TTio, Hj:l Servapp, ; -

Définition 36 (Serveur d’évaluation). Si le systéme de réécriture défini sur ¥ est terminant, on définit le
Processus Serve,q; par :

Serv epar = leval(p,r).(vr'q) (Tee(p, ', q).(q.F(p) + ' (p').eval(p’,7))) | Serv ec .

4.3 Correction

Je n’ai pas eu le temps de proposer une preuve de correction au cours du stage. Cette sous-section vise
uniquement & donner 1’énoncé des théorémes de terminaison et de validité des serveur rec et eval, en utilisant
la notion d’encodage inverse donnée dans la définition Cela ouvre la voie a une future preuve.

Conjecture 37 (Terminaison et validité du serveur rec). Soit P un processus encodant t € T(X) sur le canal
p. Alors il existe un unique processus @ tel que P | Servye. "Y1 Q. De plus, ce processus Q est terminant,

et les trois points suivants sont vérifiés.

(i) Sit est irréductible, toute forme normale Q' de Q est bisimilaire faible ¢ P | Servpec | G.
(ii) Sit est réductible, toute forme normale Q' de Q renvoie un terme t’ € T(X) tel quet — ', c’est-a-dire

qu’il existe un canal p’ et un processus P’ encodant t' sur p’ tels que Q' MZTE P | P'| Servpe.

12

(11i) Pour tout t' € T(X), t — t' si et seulement s’il existe une forme normale Q' de Q renvoyant t' au
sens ci-dessus.

Conjecture 38 (Terminaison et validité du serveur eval). Supposons le systéme de réécriture défini sur ¥

terminant et soit P un processus encodant t € T(X) sur le canal p. Alors il existe un unique processus @Q tel

eval

T . . . Y-
que P | Serveya = Q. De plus, ce processus @) est terminant et les deux points suivants sont vérifiés.

(i) Toute forme normale Q' de @ renvoie une forme normale t' de t, c’est-a-dire qu’il existe un canal p’
et un processus P’ encodant t' sur p’ tels que @Q’ L@);E P | P'| Servepai-
(ii) Pour tout t' € T(X), t' est une forme normale de t si et seulement s’il existe une forme normale Q' de

Q renvoyant t' au sens ci-dessus.

4.4 Application a I’évaluation de ’arithmétique de Peano

Considérons la signature P de 'exemple [d muni du systéme de réécriture de la définition [T1] Par les sous-
sections précédentes, on a obtenu un serveur eval permettant de calculer les expressions de I'arithmétique
de Peano encodées en m-calcul. Le cas général ayant été traité, on ne va pas réécrire le code dans ce cas
particulier, mais 'utiliser pour implémenter de nouvelles fonctions sur les termes de T(P). On peut par
exemple créer des serveurs suiv et prec donnant le successeur et le prédécesseur d’un terme (en considérant
que le prédécesseur de 0 est 0).

Servyip = lsuiv(n, r).(vpr’) (eval(n,’).r'(n).(\p(z, s, a,m).5(n')) | 7(p)) | Servepa

Servyree = Iprec(n,r).(vr'zsam) (eval(n,r").r' (n").n/(z, s,a,m).(z.F(n') + s(n”).7(n"))) | Serveya
Pour le serveur prec, I'idée est que la forme normale d’un terme ne peut pas contenir d’additions et de
multiplications, et que seuls les cas ot la racine est 0 ou s sont donc a traiter.
On peut également créer un serveur récursif permettant le calcul de la factorielle d’un entier.

Servget = fact(n,r).(vr'r" pzsam) (eval(n,r').r'(n1). 71 (z, s,a,m).(z.(Ip(, ', a’,m").s"(n1) | 7(p))

+ s(n2).fact(na,r").r" (ns).(p(2', &', @', m').m/ (n1,n3) | evallp, 7)) | Servevar

5 Conclusion

5.1 Bilan du travail réalisé

L’apport de ce travail est de proposer une implémentation de la théorie classique de la réécriture de
termes, développée dans [BN9S|, en 7-calcul. Pour cela, j’ai repris le travail d’Amel CHADDA dans [Chal9]
sur I’encodage des algébres en m-calcul en y ajoutant une notion d’encodage inverse, puis j’ai écrit un serveur
réécrivant un terme lorsque cela est possible suivant un systéme de réécriture donné. Ce serveur utilise la
théorie de la concurrence pour tester toutes les régles en méme temps et fait un choix non déterministe parmi
les réécritures possibles, de sorte que chacune d’entre elles corresponde & une w-réduction réalisable. J’ai de
plus introduit les notions nécessaires afin que la terminaison et la validité de cette implémentation puissent
étre énoncées formellement. En revanche, je n’ai pas eu le temps de me pencher sur sa preuve, et ce serait la
premiére chose a faire pour poursuivre ce stage.

Par la suite, plusieurs applications de cet encodage peuvent étre envisagées, comme la réécriture de
Parithmétique de Peano, exemple pris tout au long de l'article, mais aussi de maniére plus générale la
traduction de toute fonction calculable sur les algébres de termes en 7-calcul, dans la mesure ol la réécriture
de termes est Turing-compléte. On pourrait également implémenter en Go les systémes de réécriture. L’article
[Chal9] propose une bibliothéque de services manipulant les algeébres en Go, a partir du compilateur de 7-
calcul créé par Marco GUINTI. Le travail restant est donc ’écriture en Go des définitions de la sous-section
4.2

13

Une derniére idée serait d’étendre le travail d’encodage des algébres et de leurs réécritures a des structures
plus complexes en ajoutant des conditions sur les arguments des opérateurs. Si ¥ est une signature, on
pourrait encoder des listes d’éléments de T(X) en considérant la signature XU{(v,0), (¢,2)}, ot v désignerait
une liste vide et £ un opérateur d’ajout d’un élément prenant un premier paramétre de racine v ou £ et un
second dans T(X). On exigerait de plus que les opérateurs de ¥ ne prennent que des éléments de T(X)
en arguments. Partitionner ainsi la signature ne pose pas de difficulté supplémentaire, et cette démarche
ouvrirait une voie amusante : la possibilité d’encoder le 7m-calcul et sa sémantique de réduction en 7-calcul.

5.2 Apport personnel du stage

Ce stage a été réalisé en septembre 2021, avant ma troisiéme année de licence de mathématiques a Berlin
qui ne commengait que mi-octobre. Il n’était pas prévu dans mon cursus et je remercie tout particuliérement
Romain DEMANGEON d’avoir accepté de l’encadrer. Pour cela, j’ai suivi durant 1’été des enregistrements
vidéo de ses cours donnés en master, afin d’avoir une certaine connaissance du sujet avant de commencer le
stage.

Je suis intéressé aussi bien par les mathématiques que par I'informatique, donc la découverte d’un sujet —
les algébres de processus et plus généralement 'informatique théorique — croisant des deux matiéres m’a été
trés utile pour affiner mon projet d’orientation. Etant en licences de mathématiques et de sciences sociales
dans le cadre d’'un double cursus, je n’avais pas eu beaucoup de cours d’informatique et étre dans ce cadre
pendant un mois, lors duquel j’ai aussi assisté a des cours de master, m’a permis de fortement progresser.
Enfin, ce stage dans un laboratoire a été une opportunité de découvrir ce qu’est vraiment la recherche,
en échangeant avec mon maitre de stage, d’autres chercheurs et doctorants du LIP6, et en assistant a une
soutenance de thése.

Mon projet de recherche, qui m’a amené & introduire de nouveaux objets ou & en réinventer certains
existants (je n’ai pu me procurer un exemplaire de [BN98| qu’aprés deux semaines de stage), m’a fait
prendre conscience de la difficulté de la définition formelle en mathématiques. La majorité de mon temps de
réflexion a servi a trouver des définitions ou a revenir sur celles déja écrites afin de les rendre suffisament
rigoureuses, pertinentes mais aussi « canoniques ». Les cours de licence nous apprennent a démontrer des
résultats, mais pas tellement & imaginer des définitions puisque nous étudions des théories déja construites.
Cette découverte a non seulement été une surprise pour moi, mais aussi une occasion de beaucoup progresser
en formalisme. Je pense avoir amélioré ma perception du niveau de rigueur nécessaire dans un contexte assez
éloigné de celui d’un exercice de mathématiques.

6 Reéférences

[BN98| Franz BAADER et Tobias NIPKOW : Term rewriting and all that. Cambridge University Press, 1998.
[Chal9] Amel CHADDA : Analyse d’efficacité de services en m-calcul. Rapport de stage au LIP6, 2019.

[DA14] Romain DEMANGEON et Carlos AGON : Paradigmes de programmation concurrente. Cours de M2
a Sorbonne Université, 2014.

[SWO01] Davide SANGIORGI et David WALKER : The w-calculus : a theory of mobile processes. Cambridge
University Press, 2001.

14

	Introduction
	Algèbres et réécriture
	Algèbres de termes
	Systèmes de réécriture
	Cas de l'arithmétique de Peano

	Encodage des algèbres en Pi-calcul
	Présentation du Pi-calcul et équivalence comportementale
	Encodage d'une algèbre de termes

	Traduction d'un système de réécriture en service Pi-calcul
	Principe général
	Implémentation formelle
	Correction
	Application à l'évaluation de l'arithmétique de Peano

	Conclusion
	Bilan du travail réalisé
	Apport personnel du stage

	Références

