
Exercices de colles d’informatique
MPI/MPI*

Guillaume Chirache

Ceci est une sélection d’exercices que j’ai écrits pour des colles d’informatique en MPI/MPI* au lycée
Paul-Valéry au cours de l’année 2025-2026.

N’hésitez pas à me contacter pour signaler des erreurs, demander des indications ou proposer des
corrections.

Table des matières
Tournois . ⁠1
Dijkstra et arêtes négatives . ⁠1
Théorème de Hall . ⁠2
Théorème de Myhill-Nerode . ⁠2
Un langage non régulier . ⁠2
Des langages réguliers ? . ⁠3
Complexité de la déterminisation d’un automate fini . ⁠3
Un langage sans boucles infinies . ⁠3
Casernes de pompiers . ⁠4
Somme d’un sous-ensemble . ⁠5
Hypothèse du temps exponentiel . ⁠6

Tournois
On appelle tournoi un graphe 𝑇 = (𝑆, 𝐴) orienté simple tel que pour tout couple (𝑢, 𝑣) ∈ 𝑆2 avec

𝑢 ≠ 𝑣, un et un seul des arcs (𝑢, 𝑣) et (𝑣, 𝑢) appartient à 𝐴.

1) Combien un tournoi acyclique peut-il avoir de tris topologiques ?

2) Montrer qu’un tournoi possède un cycle si et seulement s’il possède un cycle de longueur 3.

3) Montrer que tout tournoi possède un chemin hamiltonien (un chemin passant par tous les
sommets).

Dijkstra et arêtes négatives
On considère un graphe orienté 𝐺 = (𝑆, 𝐴) et une fonction de poids 𝑤 : 𝐴 → ℤ. On fixe une source

𝑠 ∈ 𝑆 et on suppose tous les sommets atteignables depuis 𝑠.

1) Donner une condition nécessaire et suffisante (le montrer) pour qu’il y ait un plus court chemin

de 𝑠 vers tout autre sommet 𝑡.

2) On suppose maintenant cette condition remplie. L’algorithme de Dijkstra calcule-t-il toujours les
plus courts chemins ?

3) Est-il possible d’ajouter le minimum de 𝑤 à toutes les arêtes pour se ramener au cas où les arêtes
sont de poids positif ?

4) Proposer une variante de l’algorithme pour résoudre le problème et donner sa complexité en
temps.

1 sur 7

https://chirache.fr/contact/

Théorème de Hall
On souhaite montrer le théorème suivant (Hall, 1935) : un graphe 𝐺 = (𝑆, 𝐴) de bipartition 𝑋, 𝑌

admet un couplage 𝑀 saturant 𝑋 (i.e. ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑆, {𝑥, 𝑦} ∈ 𝑀) si et seulement si pour tout

𝑈 ⊆ 𝑋, |𝑁(𝑈)| ⩾ |𝑈| (où 𝑁(𝑈) est l’union des voisinages des sommets de 𝑈).

1) L’une des implications est immédiate : la montrer.

2) Pour l’autre sens, supposons avoir un couplage maximum 𝑀 qui ne recouvre pas 𝑥 ∈ 𝑋. Soit 𝑈

(resp. 𝑉) l’ensemble des sommets de 𝑋 (resp. 𝑌) reliés à 𝑥 par un chemin alternant. On note de

plus 𝑀 ′ ⊆ 𝑀 l’ensemble des arêtes de 𝑀 incidentes à un sommet de 𝑈 ∪ 𝑉 .

a) Montrer que 𝑀 ′ est un couplage parfait entre 𝑈 ∖ {𝑥} et 𝑉 .

b) Montrer que 𝑁(𝑈) ⊆ 𝑉 .

c) Conclure que |𝑁(𝑈)| < |𝑈|.

3) Application : montrer que tout graphe biparti 𝑘-régulier (tout sommet a 𝑘 voisins) admet un
couplage parfait.

Théorème de Myhill-Nerode
L’objectif de cet exercice est de caractériser précisément la minimalité d’un automate déterministe
en démontrant le théorème de Myhill-Nerode (1958).

Soit Σ un alphabet. À un langage 𝐿 ⊆ Σ∗, on associe la relation binaire ≡𝐿 définie sur Σ∗ par :

𝑢 ≡𝐿 𝑣 si et seulement si ∀𝑥 ∈ Σ∗, 𝑢𝑥 ∈ 𝐿 ⟺ 𝑣𝑥 ∈ 𝐿.

À titre d’exemples, soit 𝐿1 = {𝑤 ∈ {𝑎, 𝑏}∗ | 𝑎𝑏 est un facteur de 𝑤} et 𝐿2 = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ ℕ} sur

l’alphabet Σ = {𝑎, 𝑏}.

Dans cet exercice, tous les automates considérés sont des automates finis déterministes complets.

1) Montrer que 𝑎 ≡𝐿1
𝑎𝑎 mais que 𝑎 ≢𝐿2

𝑎𝑎.

2) Montrer que pour tout langage 𝐿, ≡𝐿 est une relation d’équivalence.

3) Identifier les classes d’équivalence de ≡𝐿1
 et ≡𝐿2

.

4) Soit 𝑛 ∈ ℕ∗ et 𝐿 ⊆ Σ∗. Montrer qu’il existe un automate à 𝑛 états reconnaissant 𝐿 si et

seulement si ≡𝐿 possède au plus 𝑛 classes d’équivalences.

5) Application : existe-t-il un automate qui reconnaît 𝐿1 (resp. 𝐿2) ? Si oui, le donner.

Un langage non régulier
Sur l’alphabet Σ = {0, 1}, on considère le langage

𝐿 = {𝑢𝑢 | 𝑢 ∈ Σ∗}.

Le but de l’exercice est de montrer par l’absurde que 𝐿 n’est pas régulier. Supposons disposer d’un

automate fini déterministe complet 𝒜︀ = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) tel que ℒ︀(𝒜︀) = 𝐿.

La fonction de transition 𝛿 est étendue en une fonction 𝛿∗ : 𝑄 × Σ∗ → 𝑄 définie récursivement par

𝛿∗(𝑞, 𝜀) = 𝑞 pour tout 𝑞 ∈ 𝑄 et 𝛿∗(𝑞, 𝑤𝜎) = 𝛿(𝛿∗(𝑞, 𝑤), 𝜎) pour (𝑞, 𝑤, 𝜎) ∈ 𝑄 × Σ∗ × Σ. Ainsi, un

mot 𝑤 ∈ Σ∗ appartient à 𝐿 si et seulement si 𝛿∗(𝑞0, 𝑤) ∈ 𝐹 .

1) Justifier que 𝛿∗(𝑞0, 0000) ≠ 𝛿∗(𝑞0, 1100) et en déduire que 𝛿∗(𝑞0, 00) ≠ 𝛿∗(𝑞0, 11).

2) Montrer que pour tout 𝑞 ∈ 𝑄 et tous 𝑥, 𝑦 ∈ Σ∗ :

2 sur 7

𝛿∗(𝑞, 𝑥𝑦) = 𝛿∗(𝛿∗(𝑞, 𝑥), 𝑦).

Indication : on pourra fixer 𝑞 et 𝑥 et procéder par induction structurelle sur 𝑦.

3) Montrer que tous les états accessibles de 𝒜︀ sont co-accessibles.

4) Soit 𝑥 et 𝑦 deux mots distincts et de même longueur sur l’alphabet Σ. Montrer que 𝛿∗(𝑞0, 𝑥) ≠
𝛿∗(𝑞0, 𝑦).

5) En déduire une contradiction.

Des langages réguliers ?
Étant donné un mot 𝑤 = 𝑎0…𝑎𝑛−1 ∈ Σ∗, on appelle miroir de 𝑤 le mot 𝑤 = 𝑎𝑛−1…𝑎0.

Pour chacun des langages suivants, déterminer s’il est régulier ou non.

1) Le langage {𝑤 ∈ {0, 1}∗ | 𝑤 = 𝑤} sur l’alphabet {0, 1} (les mots de ce langage sont appelés des
palindromes).

2) Le langage {03𝑛 | 𝑛 ∈ ℕ} sur l’alphabet {0}.

3) Le langage {02𝑛 | 𝑛 ∈ ℕ} sur l’alphabet {0}.

4) Le langage {0𝑝 | 𝑝 est un nombre premier} sur l’alphabet {0}.

5) Le langage {0𝑛 | l’écriture décimale de 𝜋 contient 𝑛 zéros consécutifs} sur l’alphabet {0}.

Complexité de la déterminisation d’un automate fini
Dans cet exercice, l’alphabet est Σ = {0, 1}. Pour 𝑛 ∈ ℕ∗, on définit le langage

𝐿𝑛 = {𝑎0…𝑎𝑘−1 ∈ Σ∗ | 𝑘 ⩾ 𝑛 et 𝑎𝑘−𝑛 = 0}.

1) Décrire par une phrase le langage 𝐿𝑛.

2) Pour 𝑛 ∈ ℕ∗, donner un automate non déterministe 𝒜︀𝑛 à 𝑛 + 1 états tel que ℒ︀(𝒜︀𝑛) = 𝐿𝑛.

3) Soit 𝑛 ∈ ℕ∗ et 𝒜︀ = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹) un automate déterministe tel que ℒ︀(𝒜︀) = 𝐿𝑛. On considère

la fonction de transition étendue 𝛿∗ telle que définie en cours.

a) Soit 𝑤1, 𝑤2 ∈ Σ𝑛 deux mots différents de longueur 𝑛. Montrer que 𝛿∗(𝑞0, 𝑤1) ≠ 𝛿∗(𝑞0, 𝑤2).

Indication : on pourra chercher un suffixe 𝑢 ∈ Σ∗ tel qu’exactement l’un des deux mots 𝑤1𝑢 et

𝑤2𝑢 soit dans 𝐿𝑛.

b) En déduire que |𝑄| ⩾ 2𝑛.

4) En déduire que le problème de la déterminisation d’un automate fini n’admet pas d’algorithme
polynomial.

Un langage sans boucles infinies

Le but de cet exercice est de montrer qu’un langage dans lequel il n’est pas possible de faire des
boucles infinies est nécessairement moins « expressif » que les langages de programmation usuels
comme OCaml ou C, au sens où il ne peut pas résoudre certains problèmes de décision pourtant
décidables.

On suppose disposer d’un langage de programmation, appelé Finito, qui ne permet que de résoudre
des problèmes de décision et avec lequel il est impossible de faire des boucles infinies : les

3 sur 7

programmes Finito prennent une chaîne de caractères en entrée et ils terminent toujours, en

répondant soit ⊤ (« oui ») soit ⊥ (« non »).

On suppose que le problème consistant à décider si une chaîne de caractères donnée est un
programme Finito valide est décidable. Autrement dit, il existe une fonction OCaml
is_valid_finito_program, de type string -> bool, qui renvoie true si la chaîne de caractères
passée en argument est un programme Finito valide, et false sinon.

De plus, il est possible d’écrire en OCaml un interpréteur Finito, c’est-à-dire qu’il existe une fonction
OCaml eval_finito_program, de type string -> string -> bool, telle que eval_finito_program

program input vaut true si le programme Finito program répond ⊤ sur input, et false s’il répond

⊥ (on n’impose rien dans le cas où program n’est pas un programme Finito valide :
eval_finito_program peut par exemple échouer dans ce cas).

Montrer qu’il existe un problème de décision (dont les instances sont les chaînes de caractères) qui
est décidable en OCaml (c’est-à-dire au sens du cours), mais qui n’est résolu par aucun programme
Finito.

L’idée initiale vient d’une pâle (examen) du cours INF412 (fondements de l’informatique : logique,

modèles, calculs) donné par Olivier Bournez à l’X. La question était formulée avec le formalisme des

machines de Turing.

Casernes de pompiers
Vous êtes chargé(e) de revoir le plan des secours publics d’une région rurale en décidant dans quels
villages une caserne de pompiers doit être installée. Votre budget est limité et vous pouvez installer

au plus 𝑛 ⩾ 1 casernes.

La région possède un ensemble fini 𝑉 de villages, avec |𝑉 | > 𝑛. La distance entre les villages est

modélisée par une application 𝑑 : 𝑉 2 → ℕ. Cette application est symétrique et, naturellement,

𝑑(𝑥, 𝑥) = 0 pour tout 𝑥 ∈ 𝑉 . Comme le réseau routier de la région est à peu près cohérent, cette
application vérifie de plus l’inégalité triangulaire :

∀(𝑥, 𝑦, 𝑧) ∈ 𝑉 3, 𝑑(𝑥, 𝑧) ⩽ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Étant donné un sous-ensemble 𝐶 ⊆ 𝑉 de villages dotés d’une caserne, on note 𝑟(𝐶) la distance
maximale d’un village à une caserne de pompiers :

𝑟(𝐶) = max
𝑥∈𝑉

(min
𝑦∈𝐶

𝑑(𝑥, 𝑦)).

Le « problème des casernes de pompiers » consiste à trouver un sous-ensemble 𝐶 ⊆ 𝑉 de cardinal

|𝐶| ⩽ 𝑛 qui minimise 𝑟(𝐶).

1) Justifier qu’il existe une solution optimale avec |𝐶| = 𝑛.

2) On propose de choisir l’ensemble 𝐶 avec l’algorithme suivant :

𝐶 ← {𝑥}, où 𝑥 est pris arbitrairement dans 𝑉
while |𝐶| ⩽ 𝑛 do

𝑟 ← 𝑟(𝐶)
𝐶 ← 𝐶 ∪ {𝑥}, où 𝑥 ∈ 𝑉 ∖ 𝐶 est tel que 𝑟 = min𝑦∈𝐶 𝑑(𝑥, 𝑦)

end

a) Explique le principe de l’algorithme et justifier qu’il est polynomial.

4 sur 7

b) Comment évolue 𝑟(𝐶) au cours de l’algorithme ?

c) Soit 𝐶 l’ensemble de villages trouvé en fin d’algorithme. Montrer qu’il existe 𝑛 + 1 villages à

distance au moins 𝑟(𝐶) les uns des autres.

d) En déduire que pour tout ensemble 𝐶′ ⊆ 𝑉 de 𝑛 villages, 𝑟(𝐶) ⩽ 2 × 𝑟(𝐶′).

Indication : on utilisera l’inégalité triangulaire.

e) Montrer alors que l’algorithme proposé est une approximation de facteur 2 du problème des
casernes de pompiers.

La suite de l’exercice consiste à montrer qu’à moins que 𝖯 = 𝖭𝖯, il n’est pas possible de trouver une

meilleure approximation. On introduit le problème de décision 𝖣𝗈𝗆𝗂𝗇𝖺𝗍𝗂𝗇𝗀𝖲𝖾𝗍 :

𝖣𝗈𝗆𝗂𝗇𝖺𝗍𝗂𝗇𝗀𝖲𝖾𝗍
Entrée : un graphe 𝐺 = (𝑆, 𝐴) non orienté et un entier 𝑘
Question : existe-t-il un ensemble de sommets 𝐷 ⊆ 𝑆 de taille |𝐷| ⩽ 𝑘 tel que tout sommet du

graphe est dans 𝐷 ou voisin d’un sommet dans 𝐷 ?

On appelle 𝟥-𝖲𝖠𝖳 la restriction de 𝖲𝖠𝖳 aux formules sous forme normale conjonctive où chaque

clause possède au plus trois littéraux. On rappelle que 𝟥-𝖲𝖠𝖳 est 𝖭𝖯-complet.

3) a) Justifier que 𝖣𝗈𝗆𝗂𝗇𝖺𝗍𝗂𝗇𝗀𝖲𝖾𝗍 est dans 𝖭𝖯.

b) Montrer que 𝖣𝗈𝗆𝗂𝗇𝖺𝗍𝗂𝗇𝗀𝖲𝖾𝗍 est 𝖭𝖯-complet en construisant une réduction polynomiale de

𝟥-𝖲𝖠𝖳 à 𝖣𝗈𝗆𝗂𝗇𝖺𝗍𝗂𝗇𝗀𝖲𝖾𝗍.

Indication : on introduira trois sommets par variable (un pour chaque valeur de vérité et un de

contrôle) et un sommet par clause.

4) Montrer que si 𝖯 ≠ 𝖭𝖯, alors pour tout 1 ⩽ 𝜌 < 2, le problème des casernes de pompiers

n’admet aucune approximation polynomiale de facteur 𝜌 .

5) On ne suppose plus que l’application 𝑑 vérifie l’inégalité triangulaire. Montrer alors que si 𝖯 ≠
𝖭𝖯, aucune approximation polynomiale de facteur constant du problème des casernes de
pompiers n’est possible.

Somme d’un sous-ensemble
On considère le problème d’optimisation suivant, appelé 𝖲𝗆𝖺𝗅𝗅𝖾𝗌𝗍𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 : étant donné un

ensemble fini non vide 𝐸 ⊆ ℤ, on cherche un sous-ensemble non vide 𝑆 ⊆ 𝐸 tel que | ∑𝑛∈𝑆 𝑛| est

minimal.

1) Résoudre le problème pour 𝐸 = {7, 8, −6, 15, −1} et 𝐸 = {−10, 6, −4, 3}.

On introduit la variante décisionnelle 𝖹𝖾𝗋𝗈𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 qui consiste, étant donné 𝐸 ⊆ ℤ fini, à

déterminer s’il existe un sous-ensemble non vide 𝑆 ⊆ 𝐸 de somme nulle.

2) Montrer que 𝖹𝖾𝗋𝗈𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 est dans la classe 𝖭𝖯.

On souhaite maintenant montrer que 𝖹𝖾𝗋𝗈𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 est en fait 𝖭𝖯-complet. Pour cela, on va

prouver que 𝟥-𝖲𝖠𝖳 ⩽P 𝖹𝖾𝗋𝗈𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆. Étant donné une instance 𝜑 de 𝟥-𝖲𝖠𝖳 à 𝑛 variables

𝑥1, …, 𝑥𝑛 et 𝑚 clauses 𝐶1, …, 𝐶𝑚, on va construire un ensemble fini 𝐸 ⊆ ℕ∗ d’entiers tel que

𝜑 est satisfiable ⟺ ∃𝑆 ⊆ 𝐸, ∑
𝑛∈𝑆

𝑛 = 11…11⏟
𝑛 chiffres

44…44⏟
𝑚 chiffres

.

5 sur 7

3) a) On admet la faisabilité d’une telle construction en temps polynomial. Montrer alors que

𝖹𝖾𝗋𝗈𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 est 𝖭𝖯-difficile.

b) On souhaite maintenant réaliser la construction admise. Dans un premier temps, proposer une

construction de 𝐸 telle que 𝜑 est satisfiable si et seulement s’il existe un sous-ensemble 𝑆 de

𝐸 dont la somme est de la forme

∑
𝑛∈𝑆

𝑛 = 11…11⏟
𝑛 chiffres

𝑐1…𝑐𝑚,

où 𝑐𝑗 est un chiffre non nul pour tout 𝑗 ∈ ⟦1, 𝑚⟧.

Indication : l’ensemble 𝐸 pourra être constitué de deux entiers 𝑎𝑖 et 𝑏𝑖 par variable 𝑥𝑖.

c) Modifier la construction précédente en ajoutant des éléments à 𝐸 afin que la condition
souhaitée initialement soit vérifiée. Conclure.

4) En déduire que si 𝖯 ≠ 𝖭𝖯, alors aucune approximation polynomiale à facteur constant de

𝖲𝗆𝖺𝗅𝗅𝖾𝗌𝗍𝖲𝗎𝖻𝗌𝖾𝗍𝖲𝗎𝗆 n’est possible.

5) Proposer néanmoins un algorithme par séparation et évaluation qui résout le problème.

Hypothèse du temps exponentiel
Pour 𝑘 ∈ ℕ∗, on appelle 𝑘-𝖲𝖠𝖳 la restriction de 𝖲𝖠𝖳 aux instances sous forme normale conjonctive

dans lesquelles les clauses sont distinctes et contiennent 𝑘 littéraux. Pour ces problèmes, lorsqu’on

parle de complexité en 𝒪︀(𝑓(𝑛)) pour 𝑓 : ℕ → ℕ, il est entendu que 𝑛 est le nombre de variables de

l’instance considérée. On rappelle que 3-𝖲𝖠𝖳 est 𝖭𝖯-complet.

1) a) Montrer que pour tout 𝑘 ⩾ 3, le problème 𝑘-𝖲𝖠𝖳 est 𝖭𝖯-complet.

b) Pour 𝑘 ⩾ 3 fixé, proposer un algorithme naïf pour résoudre 𝑘-𝖲𝖠𝖳 et donner sa complexité en

la taille de l’entrée sous la forme 𝒪︀(𝑓(𝑛)).

2) Soit 𝑘 ⩾ 3. Proposer un algorithme par retour sur trace résolvant 𝑘-𝖲𝖠𝖳 dont la complexité

temporelle est en 𝒪︀(𝑇 (𝑛)), pour une fonction 𝑇 : ℕ → ℕ vérifiant

𝑇 (𝑛) ⩽ 𝒪︀(1) + ∑
𝑘

𝑖=1
𝑇 (𝑛 − 𝑖).

Ce résultat permet en fait de montrer que 𝑇 (𝑛) = 𝒪︀(2𝛿𝑛) pour un certain 𝛿 < 1, ce que l’on
admettra.

Pour 𝑘 ⩾ 3, on pose :

𝑠𝑘 = inf{𝛿 ∈ ℝ+ | 𝑘-𝖲𝖠𝖳 admet une solution en 𝒪︀(2𝛿𝑛)}.

3) Montrer que la suite (𝑠𝑘)𝑘⩾3 converge.

Même si les exposants de la question 2 peuvent être améliorés, on pense qu’il n’est pas possible de
trouver d’algorithme fondamentalement meilleur. La conjecture suivante a été formulée en 1999 :

Hypothèse du temps exponentiel (1999)

L’hypothèse du temps exponentiel (ETH) conjecture que 𝑠3 > 0. On parle d’hypothèse forte

du temps exponentiel (SETH) lorsqu’on conjecture de plus que lim𝑘→+∞ 𝑠𝑘 = 1.

La suite de l’exercice consiste à étudier des conséquences de cette hypothèse.

6 sur 7

4) Montrer que si la conjecture ETH est vraie, alors 𝖯 ≠ 𝖭𝖯.

On considère maintenant le problème 𝖳𝗐𝗈𝖲𝖾𝗍𝗌𝖮𝗋𝗍𝗁𝗈 :

𝖳𝗐𝗈𝖲𝖾𝗍𝗌𝖮𝗋𝗍𝗁𝗈
• Entrée : (𝑑, 𝑁) ∈ ℕ2 et deux 𝑁 -uplets

𝑋 = (𝑥1, …𝑥𝑁), 𝑌 = (𝑦1, …, 𝑦𝑁) ∈ ({−1, 0, 1}𝑑)𝑁

de vecteurs de {−1, 0, 1}𝑑

• Question : existe-il un couple (𝑖, 𝑗) ∈ ⟦1, 𝑁⟧2 tel que 𝑥𝑖 et 𝑦𝑗 sont orthogonaux pour le

produit scalaire canonique sur ℝ𝑑 ?

5) a) Proposer un algorithme naïf pour 𝖳𝗐𝗈𝖲𝖾𝗍𝗌𝖮𝗋𝗍𝗁𝗈. Quelle est sa complexité ?

b) Montrer que si la conjecture SETH est vraie, alors pour tout 𝜀 > 0 et tout 𝑐 > 0, il n’existe pas

d’algorithme résolvant 𝖳𝗐𝗈𝖲𝖾𝗍𝗌𝖮𝗋𝗍𝗁𝗈 en 𝒪︀(𝑁2−𝜀𝑑𝑐).

L’idée initiale vient d’un DM du cours INF550 (algorithmique avancée) donné par Gilles Schaeffer à l’X.

7 sur 7

	Tournois
	Dijkstra et arêtes négatives
	Théorème de Hall
	Théorème de Myhill-Nerode
	Un langage non régulier
	Des langages réguliers ?
	Complexité de la déterminisation d'un automate fini
	Un langage sans boucles infinies
	Casernes de pompiers
	Somme d'un sous-ensemble
	Hypothèse du temps exponentiel

