Exercices de colles d’informatique

MPI/MPI*
Guillaume Chirache

Ceci est une sélection d’exercices que j’ai écrits pour des colles d’informatique en MPI/MPI* au lycée
Paul-Valéry au cours de I'année 2025-2026.

N’hésitez pas a me contacter pour signaler des erreurs, demander des indications ou proposer des
corrections.

Table des matiéres

0 6 T £ 1
Dijkstra et arétes NéGativesouutttittitittt 1
Théoreme de Hall oo e 2
Théoreme de Myhill-Nerode oo e 2
Un langage nomn TéGULIETu 2
Des langages TEGULIETS 7ottt et 3
Complexité de la déterminisation d’un automate fini................ooo i 3
Un langage sans boucles Infinies ... 3
Casernes de POIMIPIETSttt ettt et ettt e et 4
Somme d’un soUS-eNSEMDbIE e 5
Hypothése du temps exponentiel 6
Tournois

On appelle tournoi un graphe T = (S, A) orienté simple tel que pour tout couple (u,v) € S? avec
u # v, un et un seul des arcs (u, v) et (v, u) appartient a A.

1) Combien un tournoi acyclique peut-il avoir de tris topologiques ?
2) Montrer qu’un tournoi posséde un cycle si et seulement s’il posséde un cycle de longueur 3.

3) Montrer que tout tournoi posséde un chemin hamiltonien (un chemin passant par tous les
sommets).

Dijkstra et arétes négatives
On considére un graphe orienté G = (S, A) et une fonction de poids w : A — Z. On fixe une source
s € S et on suppose tous les sommets atteignables depuis s.

1) Donner une condition nécessaire et suffisante (le montrer) pour qu’il y ait un plus court chemin
de s vers tout autre sommet ¢.

2) On suppose maintenant cette condition remplie. L’algorithme de Dijkstra calcule-t-il toujours les
plus courts chemins ?

3) Est-il possible d’ajouter le minimum de w a toutes les arétes pour se ramener au cas ou les arétes
sont de poids positif ?

4) Proposer une variante de ’algorithme pour résoudre le probleme et donner sa complexité en
temps.

1sur?7

https://chirache.fr/contact/

Théoréme de Hall

On souhaite montrer le théoréme suivant (Hall, 1935) : un graphe G = (S, A) de bipartition X,Y
admet un couplage M saturant X (i.e. Vx € X, 3y € S, {z,y} € M) si et seulement si pour tout
UCX,|NU)| > |U| (ou N(U) est 'union des voisinages des sommets de U).

1) L’une des implications est immédiate : la montrer.

2) Pour l'autre sens, supposons avoir un couplage maximum M qui ne recouvre pas € X. Soit U
(resp. V) ensemble des sommets de X (resp. Y) reliés a « par un chemin alternant. On note de
plus M’ C M T’ensemble des arétes de M incidentes & un sommet de U U V.

a) Montrer que M’ est un couplage parfait entre U \ {z} et V.
b) Montrer que N(U) C V.
c¢) Conclure que [N(U)| < |U].
3) Application : montrer que tout graphe biparti k-régulier (tout sommet a k voisins) admet un

couplage parfait.

Théoréme de Myhill-Nerode

L’objectif de cet exercice est de caractériser précisément la minimalité d’un automate déterministe
en démontrant le théoréme de Myhill-Nerode (1958).

Soit ¥ un alphabet. A un langage L C ¥*, on associe la relation binaire =; définie sur ¥* par :

u =y, v si et seulement si Vo € ¥*,ux € L <= vz € L.

A titre d’exemples, soit L; = {w € {a,b}* | ab est un facteur de w} et L, = {a"b™ | n € N} sur
I'alphabet ¥ = {a, b}.

Dans cet exercice, tous les automates considérés sont des automates finis déterministes complets.
1) Montrer que a = aa mais que a #,_ aa.

2) Montrer que pour tout langage L, =; est une relation d’équivalence.

3) Identifier les classes d’équivalence de =; et=; .
1 2
)

4) Soitn € N* et L C ¥*. Montrer qu’il existe un automate a n états reconnaissant L si et
seulement si =; possede au plus n classes d’équivalences.

5) Application : existe-t-il un automate qui reconnait L, (resp. L,) ? Si oui, le donner.

Un langage non régulier
Sur l'alphabet ¥ = {0, 1}, on considére le langage

L ={uu|ueX*}

Le but de I’exercice est de montrer par ’absurde que L n’est pas régulier. Supposons disposer d’'un
automate fini déterministe complet A = (X, @, qy, 9, F') tel que £(A) = L.

La fonction de transition J est étendue en une fonction §* : Q x ¥* — @) définie récursivement par
0*(q,€) = q pour tout ¢ € Q et 6*(q, wo) = §(6*(q,w), o) pour (g, w,0) € Q X ¥* x X. Ainsi, un
mot w € ¥* appartient & L si et seulement si 6*(gy, w) € F.

1) Justifier que 6*(gy, 0000) # 6*(gy, 1100) et en déduire que §*(gy, 00) # 0*(gy, 11).

2) Montrer que pour tout ¢ € @ et tous x,y € X*:

2sur 7

6*(q, zy) = 0*(6* (¢, ®), y).

Indication : on pourra fixer q et x et procéder par induction structurelle sury.
3) Montrer que tous les états accessibles de .4 sont co-accessibles.

4) Soit et y deux mots distincts et de méme longueur sur ’alphabet ¥. Montrer que §*(g,, x) #
6 (q()a y)

5) En déduire une contradiction.

Des langages réguliers ?

.) = . . —
Etant donné un mot w = ay...a,,_; € X*, on appelle miroir de w le mot w = a,,_;...qa,.
Pour chacun des langages suivants, déterminer s’il est régulier ou non.

1) Le langage {w € {0,1}* | w = w} sur l'alphabet {0, 1} (les mots de ce langage sont appelés des
palindromes).

2) Le langage {03 | n € N} sur I'alphabet {0}.

)
3) Le langage {0?" | n € N} sur I'alphabet {0}.
4) Le langage {0P | p est un nombre premier} sur 'alphabet {0}.
)

5) Le langage {0™ | ’écriture décimale de 7 contient n zéros consécutifs} sur I'alphabet {0}.

Complexité de la déterminisation d’un automate fini
Dans cet exercice, I’alphabet est ¥ = {0, 1}. Pour n € N*, on définit le langage

L,={ay...ar_; €X*|k>neta,, =0}
1) Décrire par une phrase le langage L,,.
2) Pour n € N*¥, donner un automate non déterministe A,, a n + 1 états tel que £(A4,,) = L,,.
3) Soitn € N* et A = (%, @, gy, 9, F') un automate déterministe tel que £(A) = L,,. On considére
la fonction de transition étendue §* telle que définie en cours.

a) Soit wy,w, € X" deux mots différents de longueur n. Montrer que §*(gq, w;) # 0*(gy, w)-

Indication : on pourra chercher un suffixe u € X* tel qu’exactement I’un des deux mots w,u et
wyu soit dans L,,.

b) En déduire que |Q| > 2".
4) En déduire que le probléme de la déterminisation d’un automate fini n’admet pas d’algorithme

polynomial.

Un langage sans boucles infinies

Le but de cet exercice est de montrer qu’'un langage dans lequel il n’est pas possible de faire des
boucles infinies est nécessairement moins « expressif » que les langages de programmation usuels
comme OCaml ou C, au sens ou il ne peut pas résoudre certains problemes de décision pourtant

décidables.

On suppose disposer d’un langage de programmation, appelé Finito, qui ne permet que de résoudre
des problémes de décision et avec lequel il est impossible de faire des boucles infinies : les

3 sur 7

programmes Finito prennent une chaine de caractéres en entrée et ils terminent toujours, en
répondant soit T («oui») soit L («non»).

On suppose que le probléme consistant a décider si une chaine de caractéres donnée est un
programme Finito valide est décidable. Autrement dit, il existe une fonction OCaml

is valid finito program, de type string -> bool, qui renvoie true sila chaine de caractéres
passée en argument est un programme Finito valide, et false sinon.

De plus, il est possible d’écrire en OCaml un interpréteur Finito, c’est-a-dire qu’il existe une fonction
OCaml eval finito program, de type string -> string -> bool, telle que eval finito program
program input vaut true sile programme Finito program répond T sur input, et false s’il répond
L (on n’impose rien dans le cas o program n’est pas un programme Finito valide :

eval_finito program peut par exemple échouer dans ce cas).

Montrer qu’il existe un probleme de décision (dont les instances sont les chaines de caracteres) qui
est décidable en OCaml (c’est-a-dire au sens du cours), mais qui n’est résolu par aucun programme
Finito.

L’idée initiale vient d’une pale (examen) du cours INF412 (fondements de Uinformatique : logique,
modeéles, calculs) donné par Olivier Bournez a I’X. La question était formulée avec le formalisme des
machines de Turing.

Casernes de pompiers

Vous étes chargé(e) de revoir le plan des secours publics d’une région rurale en décidant dans quels
villages une caserne de pompiers doit étre installée. Votre budget est limité et vous pouvez installer
au plus n > 1 casernes.

La région posséde un ensemble fini V' de villages, avec |V| > n. La distance entre les villages est
modélisée par une application d : V2 — N. Cette application est symétrique et, naturellement,
d(z,x) = 0 pour tout x € V. Comme le réseau routier de la région est a peu prés cohérent, cette
application vérifie de plus I'inégalité triangulaire :

V(z,y,2) € V?,d(z,2) < d(z,y) + d(y, 2).

Etant donné un sous-ensemble C' C V de villages dotés d’une caserne, on note 7(C) la distance
maximale d’un village a une caserne de pompiers :

= ind .
r(C) gleag(ryrgg (:v,y))

Le «probléme des casernes de pompiers » consiste a trouver un sous-ensemble C' C V de cardinal
|C| < n qui minimise 7(C).

1) Justifier qu’il existe une solution optimale avec |C| = n.

2) On propose de choisir 'ensemble C avec I’algorithme suivant :

C <+ {x}, ou x est pris arbitrairement dans V'
while |C] < n do

r <« 1r(C)

C+ CU{z},ouz € V\C esttel que r = min, . d(z,y)
end

a) Explique le principe de I’algorithme et justifier qu’il est polynomial.

4 sur 7

b) Comment évolue r(C') au cours de ’algorithme ?

c) Soit C' I'ensemble de villages trouvé en fin d’algorithme. Montrer qu’il existe n + 1 villages a
distance au moins r(C') les uns des autres.

d) En déduire que pour tout ensemble C’ C V de n villages, 7(C) < 2 x r(C").
Indication : on utilisera I’inégalité triangulaire.

e) Montrer alors que I’algorithme proposé est une approximation de facteur 2 du probléme des
casernes de pompiers.

La suite de l'exercice consiste a montrer qu’a moins que P = NP, il n’est pas possible de trouver une
meilleure approximation. On introduit le probléme de décision DominatingSet :

DominatingSet

Entrée : un graphe G = (S, A) non orienté et un entier k

Question : existe-t-il un ensemble de sommets D C S de taille | D| < k tel que tout sommet du
graphe est dans D ou voisin d’'un sommet dans D ?

On appelle 3-SAT la restriction de SAT aux formules sous forme normale conjonctive ou chaque
clause posséde au plus trois littéraux. On rappelle que 3-SAT est NP-complet.

3) a) Justifier que DominatingSet est dans NP.

b) Montrer que DominatingSet est NP-complet en construisant une réduction polynomiale de
3-SAT a DominatingSet.

Indication : on introduira trois sommets par variable (un pour chaque valeur de vérité et un de
controle) et un sommet par clause.

4) Montrer que si P # NP, alors pour tout 1 < p < 2, le probléme des casernes de pompiers
n’admet aucune approximation polynomiale de facteur p .

5) On ne suppose plus que I'application d vérifie I'inégalité triangulaire. Montrer alors que si P #
NP, aucune approximation polynomiale de facteur constant du probléme des casernes de
pompiers n’est possible.

Somme d’un sous-ensemble

On considere le probleme d’optimisation suivant, appelé SmallestSubsetSum : étant donné un
ensemble fini non vide E' C Z, on cherche un sous-ensemble non vide S C E tel que [}° _ n|est
minimal.

1) Résoudre le probléme pour E = {7,8,—6,15,—1} et E = {—10,6,—4, 3}.
On introduit la variante décisionnelle ZeroSubsetSum qui consiste, étant donné £ C Z fini, a
déterminer s’il existe un sous-ensemble non vide S C E de somme nulle.

2) Montrer que ZeroSubsetSum est dans la classe NP.

On souhaite maintenant montrer que ZeroSubsetSum est en fait NP-complet. Pour cela, on va
prouver que 3-SAT <p ZeroSubsetSum. Etant donné une instance ¢ de 3-SAT a n variables
Zy,..., T, et mclauses C, ..., C,, on va construire un ensemble fini £ C N* d’entiers tel que

p est satisfiable <= 45 C F, Z n=11...1144...44.

nes

n chiffresm chiffres

5sur 7

3) a) On admet la faisabilité d’une telle construction en temps polynomial. Montrer alors que
ZeroSubsetSum est NP-difficile.

b) On souhaite maintenant réaliser la construction admise. Dans un premier temps, proposer une
construction de E telle que ¢ est satisfiable si et seulement s’il existe un sous-ensemble S de

FE dont la somme est de la forme

> n=11.1lc..c,,
N——

nes n chiffres
ou ¢; est un chiffre non nul pour tout j € [1,m].
Indication : 'ensemble E pourra étre constitué de deux entiers a,; et b, par variable x;.

¢) Modifier la construction précédente en ajoutant des éléments a E afin que la condition
souhaitée initialement soit vérifiée. Conclure.

4) En déduire que si P # NP, alors aucune approximation polynomiale a facteur constant de

SmallestSubsetSum n’est possible.

5) Proposer néanmoins un algorithme par séparation et évaluation qui résout le probleme.

Hypothése du temps exponentiel

Pour k € N*, on appelle k-SAT la restriction de SAT aux instances sous forme normale conjonctive
dans lesquelles les clauses sont distinctes et contiennent £ littéraux. Pour ces problémes, lorsqu’on
parle de complexité en O(f(n)) pour f : N — N, il est entendu que n est le nombre de variables de
I'instance considérée. On rappelle que 3-SAT est NP-complet.

1) a) Montrer que pour tout k > 3, le probléme k-SAT est NP-complet.

b) Pour k > 3 fixé, proposer un algorithme naif pour résoudre k-SAT et donner sa complexité en
la taille de I'entrée sous la forme O(f(n)).

2) Soit k > 3. Proposer un algorithme par retour sur trace résolvant k-SAT dont la complexité
temporelle est en O(T'(n)), pour une fonction T : N — N vérifiant

k
T(n) < O(1) + Z T(n —i).

Ce résultat permet en fait de montrer que 7'(n) = (9(25”) pour un certain 0 < 1, ce que 'on
admettra.

Pour k£ > 3, on pose :

S = inf{5 eR, ‘ k-SAT admet une solution en 0(25”)}.

3) Montrer que la suite (s;), _, converge.

Méme si les exposants de la question 2 peuvent étre améliorés, on pense qu’il n’est pas possible de
trouver d’algorithme fondamentalement meilleur. La conjecture suivante a été formulée en 1999 :

Hypotheése du temps exponentiel (1999)
L’hypothese du temps exponentiel (ETH) conjecture que s; > 0. On parle d’hypothése forte
du temps exponentiel (SETH) lorsqu’on conjecture de plus que lim;_, . s, = 1.

La suite de I'exercice consiste a étudier des conséquences de cette hypothése.

6 sur 7

4) Montrer que si la conjecture ETH est vraie, alors P # NP.

On considere maintenant le probleme TwoSetsOrtho :

TwoSetsOrtho
« Entrée : (d, N) € N2 et deux N-uplets
N
X = (z1,..zy),Y = (y1,..,yn) € ({-1,0,1}%)
de vecteurs de {—1,0,1}¢
* Question : existe-il un couple (i,7) € [1, N]? tel que z; et y; sont orthogonaux pour le

produit scalaire canonique sur R? ?

5) a) Proposer un algorithme naif pour TwoSetsOrtho. Quelle est sa complexité ?

b) Montrer que si la conjecture SETH est vraie, alors pour tout € > 0 et tout ¢ > 0, il n’existe pas
d’algorithme résolvant TwoSetsOrtho en O(N?7¢d°).

L’idée initiale vient d’un DM du cours INF550 (algorithmique avancée) donné par Gilles Schaeffer a I’X.

7 sur 7

	Tournois
	Dijkstra et arêtes négatives
	Théorème de Hall
	Théorème de Myhill-Nerode
	Un langage non régulier
	Des langages réguliers ?
	Complexité de la déterminisation d'un automate fini
	Un langage sans boucles infinies
	Casernes de pompiers
	Somme d'un sous-ensemble
	Hypothèse du temps exponentiel

